18 research outputs found

    THERMAL INSULATION OF SINGLE LEAF FIRE DOORS, Test results comparison in standard temperature-time fire scenario for different types of doorsets

    Get PDF
    Fire resistant door assemblies (doors) for pedestrian or industrial traffic with frame, leaf or leaves, rolled or folded curtain etc. are designed for installation in the openings of the building’s vertical internal partitions. The building and its associated equipment shall be designed and made so that in case of fire it ensures the necessary load bearing capacity of the structure for the time specified in national regulations, limitation of fire and smoke propagation within the building, limitation of fire propagation onto the adjacent buildings and evacuation of people, and it provides safety of the rescue teams. The mentioned requirements are not usually considered individually (e.g. ensuring proper evacuation is connected with the structural load bearing capacity, fire and smoke propagation within the building, and rescue team safety), therefore individual elements of buildings can play several roles during a fire.This also refers to the building elements such as doors which are usually required in terms of design and execution to ensure that in case of fire they shall, for a specific period of time prevent its development from the room or a specific zone where the fire started to other rooms or zones, allow evacuation of people by limiting heat radiation, and facilitate rescue team activities. Therefore, fire doors have a major role in the fulfillment of the rules of buildings fire safety.This paper discusses the main issues related to the fire resistance of fire doors (tests methodology and way of classification) and presents a comparison of temperature rises on unexposed surface of fire doors test specimens depending on the type of structure and side of fire exposure. Temperature rises have been compared on unexposed surface of timber, aluminum and steel single leaf doorset which have fulfill the requirements of the EI2 30 fire resistance class, in case of the fire acting from the hinge side and the side opposite to the hinges

    FIRE RESISTANCE OF ALUMINIUM GLAZED CURTAIN WALLS, Test results comparison depending on the side of fire exposure

    Get PDF
    This paper discusses the main issues related to the fire resistance of aluminium glazed curtain walls including the tests methodology and way of classification of this type of building elements. Moreover, the paper presents the comparison of fire resistance test results of large test specimens of curtain walls in full configuration depending on the side of fire exposure. Temperature rises have been compared on unexposed surface of the curtain walls tested for standard and external fire exposure. To made the comparison four test specimens of glazed aluminium curtain walls in full configuration, were tested. Curtain walls had the same transom – mullion structure. Two test specimens were tested for external fire exposure, and two for standard fire exposure. Dimensions of exposed surfaces were 5000 x 4500 mm (width x height) for external fire exposure and 5000 x 4800 mm (width x height) for internal fire exposure

    FIRE RESISTANCE TESTS OF ALUMINIUM GLAZED PARTITIONS, Results comparison

    Get PDF
    This paper discusses the main problems related to the fire resistance of aluminium glazed partitions, including the tests methodology and way of classification of this type of elements. Moreover, the paper presents the comparison of fire resistance test results of glazed partition test specimens, depending on the number of insulation inserts placed inside the aluminium structure profiles. To made the comparison the specimens with the same transom – mullion structure were tested in two configurations and with two filling solutions – with profiles filled only in the middle part and with fully filled profiles

    FIRE RESISTANCE GLAZED CONSTRUCTIONS CLASSIFICATION, Changes in the field of application

    Get PDF
    The most common fire resistance glazed constructions are arguably doors and non – loadbearing walls (partitions, curtain walls, external walls). In 2014 we welcomed revisions of fire resistance testing standards for doors (EN 1634-1) and curtain walls (EN-1364-3), while revision of EN 1364-1 standard for non – loadbearing walls is planned to be implemented by the end of the year 2015. Taking into account the existence of several EXAP’s for all these kind of constructions, selection of test specimen(s) with best possible configuration is getting more significant nowadays. But equally important question appears - how to treat previously performed fire resistance tests?This paper discusses some interpretation concerns regarding fire resistance classifications of aluminium glazed, non – loadbearing constructions in light of rapidly changing regulations. The paper also points out same examples of testing evidence with regard to outlined concerns

    Effect of Polypropylene Modification by Impregnation with Oil on Its Wear and Friction Coefficient at Variable Load and Various Friction Rates

    Get PDF
    Laboratorial two-body wear testing was carried out in order to assess effects of polypropylene modification by impregnating it with oils on friction coefficient and wear in comparison to those parameters of unmodified polypropylene, Teflon, and polyamide during operation under conditions of sliding friction without lubrication. Wear behaviour of the tested specimens was investigated using ASTM G77-98 standard wear test equipment. Recording program made it possible to visualise and record the following parameters: rotational speed and load, linear wear, friction coefficient, temperature of the specimen, and ambient temperature. In addition, wear mechanisms of the analysed materials were determined with use of scanning electron microscopy. In the case of the remaining tested polymers, the most important mechanism of wear was adhesion (PP, PTFE, PA 6.6, and PA MoS2), microcutting (PTFE, PA 6.6, and PA MoS2), fatigue wear (PTFE), forming “roll-shaped particles” combined with plastic deformation (PA 6.6 and PA MoS2), and thermal wear (PP). Impregnation of polypropylene with engine oil, gear oil, or RME results in significant reduction of friction coefficient and thus of friction torque, in relation to not only unmodified polypropylene but also the examined polyamide and Teflon

    Fire Insulation of Aluminum Glazed Partitions Depending on the Infill Solution of Framework Profiles

    No full text
    This paper presents the main problems related to the fire resistance of aluminium glazed partitions. It discusses technical solutions used in partition systems with a specific fire resistance class, as well as a procedure and the general principles of classification of fire resistance for structures of this type. Moreover, the paper presents the comparison of fire resistance test results of glazed partition test specimens, depending on the volume of insulation inserts placed inside the aluminium structure profiles. To made the comparison the specimens with the same transom - mullion structure were tested with two filling solutions - with same profiles filled only in the middle part and fully filled

    Wpływ profili wzmacniających na odporność ogniową aluminiowych przegród przeszklonych

    No full text
    The inner walls of a building, which do not constitute its structure and therefore do not have loadbearing properties, are called partition walls. The main task of this type of element is the separation of rooms in a building, which is why they should be designed and constructed in a way that ensures, among others, compliance with fire safety requirements, including those related to fire resistance. There are many types of fire-resistant partition walls both on the European and global construction market, among which the most impressive effect is achieved by those using glass elements in their structure. These include aluminium glazed partitions, which are the subject of this paper. These structures are usually made of special fire-resistant glass positioned in three chamber profiles, made of two aluminium sections, connected by a thermal break, usually made of glass fibre reinforced polyamide. The chambers created in this way are filled with special insulating inserts, and the degree of filling depends on the expected fire resistance class, which is determined by an appropriate test. Large wall-height profiles of this type are usually further reinforced by screwing to them additional, special aluminium profiles. In this paper, the impact of using this type of additional profiles on the fire resistance of a glazed wall was analysed. The results of two walls with identical external dimensions and the same static scheme, made on the basis of the same glazing, from the same aluminium profiles have been compared, with additional reinforcing profiles applied in one of the tests. This article discusses the results obtained and the conclusions from the tests conducted.Ściany wewnętrzne budynku, które nie stanowią jego konstrukcji, a tym samym nie mają właściwości nośnych, nazywane są ścianami działowymi. Głównym zadaniem tego typu elementów jest wydzielenie pomieszczeń w budynku, dlatego należy je projektować i wykonywać w sposób zapewniający m.in. zachowanie wymagań bezpieczeństwa pożarowego, w tym w zakresie odporności ogniowej. Na europejskim, a także światowym rynku budowlanym istnieje wiele rodzajów przeciwpożarowych ścianek działowych, z których najbardziej spektakularny efekt osiągają te, które wykorzystują w swojej konstrukcji elementy szklane. Należą do nich przeszklone przegrody aluminiowe które są przedmiotem niniejszego artykułu. Konstrukcje te są zwykle wykonane ze specjalnego szkła odpornego na działanie ognia, umieszczonego w trójkomorowych profilach składających się z dwóch profili aluminiowych, połączonych przekładką termiczną, najczęściej z poliamidu wzmocnionego włóknem szklanym. Powstałe w ten sposób komory wypełnione są specjalnymi wkładami izolacyjnymi, a stopień wypełnienia jest uzależniony od oczekiwanej klasy odporności ogniowej, która jest określana odpowiednim badaniem. Tego typu profile o dużej wysokości ścian są zwykle dodatkowo wzmacniane poprzez przykręcenie do nich specjalnych profili aluminiowych. W artykule przeanalizowano wpływ zastosowania tego typu dodatkowych profili na odporność ogniową przeszklonej ściany. Porównano wyniki dwóch ścian o identycznych wymiarach zewnętrznych i tym samym schemacie statycznym, wykonanych na podstawie tego samego schematu oszklenia, z tych samych profili aluminiowych, z dodatkowymi profilami wzmacniającymi zastosowanymi w jednym z badań. W artykule omówiono uzyskane wyniki oraz wnioski z przeprowadzonych badań

    Elastomer Spacers in Fire Conditions

    No full text
    In the paper, fire resistance of linear joints seal made of elastomer spacers under standard fire conditions, and thermal degradation range of EPDM elastomeric spacers are investigated. The geometry of elastomer spacer joints is important not only for their load capacity under normal conditions - thickness, width, and cavity depth can also influence fire resistance performance. Linear joints of different thicknesses and widths have been tested. The fire insulation and fire integrity were verified for various arrangements. Relatively low thermal degradation rates have been measured, given that EPDM is a combustible material

    Study on critical places for maximum temperature rise on unexposed surface of curtain wall test specimens

    No full text
    The paper discusses the main issues related to the fire resistance of glazed curtain walls including the tests methodology and way of classification of this type of building elements. Moreover, the paper presents an attempt to determine the weak points of aluminium glazed curtain wall test specimens regarding to the maximum temperature rise measurements, based on the fire resistance tests performed in recent years by Fire Research Department of Building Research Institute. The paper analyse the results of temperature rise on unexposed surface of 17 aluminium glazed curtain wall specimens tested for internal fire exposure in accordance with EN 1364-3:2006 [3] and EN 1364-3:2014 [4], which achieved the fire resistance class of min. EI 15

    Falling parts of external walls claddings in case of fire – ITB test method – results comparison

    No full text
    Paper presents ITB methodology of testing and assessment of buildings with regard to falling of external walls claddings in case of fire. In the ITB methodology of impact on the facade (external claddings) was assumed in form of flames, generated from a specially designed propane, sand burner with a defined fuel flow rate and laminar airflow from the inside of the furnace resulting in determined temperature and height of the flame. Evaluated criterion is also discussed. Test results of several different types of claddings is analysed and presented in relation to the national Polish regulation along with some technical assessment regarding individual
    corecore