4 research outputs found

    Ionic Liquids as Homogeneous Catalysts for Glycerol Oligomerization

    No full text
    Ionic liquids (ILs) were used for the first time as catalysts for the glycerin condensation reaction. A series of imidazolium and ammonium ionic liquids differing in the length of the alkyl substituent (C2, C12, and C14) and the type of anion (Br−, CH3COO−, and NaHPO4−) were synthesized using a typical two-step method. The structure of the obtained ILs was confirmed by nuclear magnetic resonance 13C NMR, and their base power was determined on the basis of the Hammett function. The oligomerization of glycerin with the participation of the obtained ionic liquids and, for comparison, in the presence of a homogeneous basic catalyst Na2CO3, was carried out for 3 h at 180 °C, under a pressure of 0.4 bar, where the highest conversion, i.e., 92%, was obtained against 1-dodecyl-N,N,N-triethylammonium acetate. The course of the reaction was monitored using a reaction system coupled with a FTIR spectrometer, which allowed for the tracking of changes in product concentration over time and the assessment of glycerin oligomerization kinetics. The reaction products were analyzed by positive electrospray ionization mass spectrometry (ESI-MS), 13C NMR, and infrared absorption spectroscopy (FTIR)

    Multi-Alkenylsilsesquioxanes as Comonomers and Active Species Modifiers of Metallocene Catalyst in Copolymerization with Ethylene

    No full text
    The copolymers of ethylene (E) with open-caged iso-butyl-substituted tri-alkenyl-silsesquioxanes (POSS-6-3 and POSS-10-3) and phenyl-substituted tetra-alkenyl-silsesquioxane (POSS-10-4) were synthesized by copolymerization over the ansa-metallocene catalyst. The influence of the kind of silsesquioxane and of the copolymerization conditions on the reaction performance and on the properties of the copolymers was studied. In the case of copolymerization of E/POSS-6-3, the positive comonomer effect was observed, which was associated with the influence of POSS-6-3 on transformation of the bimetallic ion pair to the active catalytic species. Functionality of silsesquioxanes and polymerization parameters affected the polyhedral oligomeric silsesquioxanes (POSS) contents in the copolymers which varied in the range of 1.33–7.43 wt %. Tri-alkenyl-silsesquioxanes were incorporated into the polymer chain as pendant groups while the tetra-alkenyl-silsesquioxane derivative could act as a cross-linking agent which was proved by the changes in the contents of unsaturated end groups, by the glass transition temperature values, and by the gel contents (up to 81.3% for E/POSS-10-4). Incorporation of multi-alkenyl-POSS into the polymer chain affected also the melting and crystallization behaviors
    corecore