17 research outputs found

    Effect of Fasting on the Spexin System in Broiler Chickens

    No full text
    Spexin (SPX) is a highly conservative peptide hormone containing 14 amino acids and was discovered in 2007 by bioinformatics methods. However, nothing is yet known about its role in the metabolism of birds, including broilers. The aim of this study was to investigate the effect of short-term fasting (2, 4, and 8 h) on the concentration of SPX in blood serum and the expression levels of the genes encoding this peptide (SPX1) and its receptors, GALR2 and GALR3, in the tissues involved in carbohydrate and lipid metabolism (muscles, adipose tissue, and liver). We also analyzed the mRNA expression of these genes in various chicken tissues. Moreover, we studied the correlation between the serum level of SPX and other metabolic parameters (insulin, glucagon, glucose, triglycerides, and cholesterol). Using RT-qPCR, we found that SPX1, GALR2, and GALR3 are expressed in all investigated tissues in broiler chicken. Moreover, using a commercially available radio-immunoassay, we noted an increase of the SPX level in blood serum after 4 and 8 h of fasting compared to nonfasted animals (p < 0.05). This increase was positively correlated with glucagon concentration (r = 0.341; p < 0.05) and negatively with glucose concentration (r = −0.484; p < 0.01). Additionally, we discovered that in the short term, food deprivation leads to the expression regulation of SPX1, GALR2, and GLAR3 in tissues associated with metabolism of carbohydrates and lipids. The obtained results indicate that SPX is involved in the regulation of metabolism in broiler chickens

    Effect of Tempeh and Daidzein on Calcium Status, Calcium Transporters, and Bone Metabolism Biomarkers in Ovariectomized Rats

    No full text
    Menopause marks a critical life stage characterized by hormonal changes that significantly impact bone health, leading to a heightened susceptibility to bone fractures. This research seeks to elucidate the impact of daidzein and tempeh on calcium status, calcium transporters, and bone metabolism in an ovariectomized rat model. Forty female Wistar rats, aged 3 months, participated in a two-phase experiment. The initial phase involved inducing a calcium deficit, while the second phase comprised dietary interventions across five groups: Sham (S) and Ovariectomy (O) with a standard diet, O with bisphosphonate (OB), O with pure daidzein (OD), and O with tempeh (OT). Multiple parameters, encompassing calcium levels, calcium transporters, bone histopathology, and serum bone metabolism markers, were evaluated. The findings revealed that the OT group showcased heightened levels of bone turnover markers, such as pyridinoline, C-telopeptide of type I collagen, bone alkaline phosphatase, and procollagen type I N-terminal propeptide, in contrast to S and O groups, with statistical significance (p p > 0.05), the OD and OT groups exhibited increased expression compared to the O group. We hypothesized that obtained results may be related to the effect of isoflavones on estrogen pathways because of their structurally similar to endogenous estrogen and weak estrogenic properties. In conclusion, the daily consumption of pure daidzein and tempeh could potentially improve and reinstate calcium status, calcium transport, and bone metabolism in ovariectomized rats. Additionally, isoflavone products demonstrate effects similar to bisphosphonate drugs on these parameters in ovariectomized rats

    Effects of Ovariectomy and Sex Hormone Replacement on Numbers of Kisspeptin-, Neurokinin B- and Dynorphin A-immunoreactive Neurons in the Arcuate Nucleus of the Hypothalamus in Obese and Diabetic Rats

    No full text
    KNDy neurons co-expressing kisspeptin (KP), neurokinin B (NKB) and dynorphin A (DYN A) in the arcuate nucleus of the hypothalamus (ARC) are key regulators of reproduction. Their activity is influenced by metabolic and hormonal signals. Previously, we have shown that orchidectomy alters the KP-, NKB-, and DYN A-immunoreactivity in the high-fat diet-induced (HFD) obesity and diabetes type 2 (DM2) models. Considering the potential sex difference in the response of KNDy neurons, we have hypothesized that ovariectomy (OVX) and post-ovariectomy replacement with estradiol (OVX+E2) or estradiol and progesterone (OVX+E2+P4) will also affect these neurons in HFD and DM2 females. Thus, each of these treatment protocols were employed for control, HFD, and DM2 groups of rats leading to nine experimental conditions within which we have determined the number of KP-, NKB-, or DYN-immunoreactive (-ir) neurons and assessed the metabolic and hormonal profiles of the animals. Accordingly: (1) no effects of group and surgery were observed on the number of KP-ir neurons; (2) the overall number of NKB-ir neurons was higher in the OVX+E2+P4 and OVX+E2 animals compared to OVX; (3) overall, the number of DYN A-ir neurons was higher in DM2 vs. control group, and surgery had an effect on the number of DYN A-ir neurons; (4) the metabolic and hormonal profiles were altered in HFD and DM2 animals compared to controls. Current data together with our previously published results indicate sex-specific differences in the response of KNDy neurons to DM2

    Ostarine-Induced Myogenic Differentiation in C2C12, L6, and Rat Muscles

    No full text
    Ostarine (also known as enobosarm or Gtx-024) belongs to the selective androgen receptor modulators (SARMs). It is a substance with an aryl-propionamide structure, classified as a non-steroidal compound that is not subjected to the typical steroid transformations of aromatization and reduction by α5 reductase. Despite ongoing research on ostarine, knowledge about it is still limited. Earlier studies indicated that ostarine may affect the metabolism of muscle tissue, but this mechanism has not been yet described. We aimed to investigate the effect of ostarine on the differentiation and metabolism of muscle. Using C2C12 and L6 cells, as well as muscles obtained from rats administered ostarine, we showed that ostarine stimulates C2C12 and L6 proliferation and cell viability and that this effect is mediated by androgen receptor (AR) and ERK1/2 kinase activation (p p p < 0.01). Based on our research, we conclude that ostarine stimulates muscle tissue proliferation and differentiation via the androgen receptor

    Ostarine-Induced Myogenic Differentiation in C2C12, L6, and Rat Muscles

    No full text
    Ostarine (also known as enobosarm or Gtx-024) belongs to the selective androgen receptor modulators (SARMs). It is a substance with an aryl-propionamide structure, classified as a non-steroidal compound that is not subjected to the typical steroid transformations of aromatization and reduction by &alpha;5 reductase. Despite ongoing research on ostarine, knowledge about it is still limited. Earlier studies indicated that ostarine may affect the metabolism of muscle tissue, but this mechanism has not been yet described. We aimed to investigate the effect of ostarine on the differentiation and metabolism of muscle. Using C2C12 and L6 cells, as well as muscles obtained from rats administered ostarine, we showed that ostarine stimulates C2C12 and L6 proliferation and cell viability and that this effect is mediated by androgen receptor (AR) and ERK1/2 kinase activation (p &lt; 0.01). We also found that ostarine stimulates muscle cell differentiation by increasing myogenin, MyoD, and MyH expression in both types of cells (p &lt; 0.01). Moreover, pharmacological blocking of AR inhibits the stimulatory effect of ostarine. We further demonstrated that 30 days of ostarine administration increases myogenin, MyoD, and MyH expression, as well as muscle mass, in rats (p &lt; 0.01). Based on our research, we conclude that ostarine stimulates muscle tissue proliferation and differentiation via the androgen receptor

    Emulsifier and Xylanase Can Modulate the Gut Microbiota Activity of Broiler Chickens

    No full text
    In this study, we aimed to investigate the effect of xylanase (XYL), emulsifier (EMU), and a combination of both (XYL + EMU) in wheat diet with a high level of tallow on gastrointestinal tract microbiota activity, excretion of sialic acids, and selected gut segments morphology of 480 one-day-old male ROSS 308 broiler chickens. The activities of bacterial enzymes in the ileal digesta were lower in experimental groups compared to the control (CON) group. Enzyme activity in the cecum was significantly higher than in the ileum. The additives did not affect the excretion of sialic acid. The number of duodenum goblet cells on the villi decreased in all of the experimental groups (p &lt; 0.05). The simultaneous use of XYL + EMU deepened the ileum crypts (p &lt; 0.05). The total short-chain fatty acid (SCFA) concentration in the cecal digesta was higher in experimental groups. The abundance of Bifidobacterium, Lactobacillus, and Escherichia coli did not change among experimental groups. The relative abundance of Clostridium was significantly (p &lt; 0.05) lower in groups with emulsifier addition. In conclusion, the simultaneous usage of EMU and XYL in wheat-based diets with beef tallow reduces the ileum microbiota activity and enhances cecum microbiota activity. Presumably, the addition of both additives results in a cumulative effect on the gut microbiota activity

    GIP_HUMAN [22–51] Peptide Encoded by the Glucose-Dependent Insulinotropic Polypeptide (GIP) Gene Suppresses Insulin Expression and Secretion in INS-1E Cells and Rat Pancreatic Islets

    No full text
    GIP_HUMAN [22–51] is a recently discovered peptide that shares the same precursor molecule with glucose-dependent insulinotropic polypeptide (GIP). In vivo, chronic infusion of GIP_HUMAN [22–51] in ApoE−/− mice enhanced the development of aortic atherosclerotic lesions and upregulated inflammatory and proatherogenic proteins. In the present study, we evaluate the effects of GIP_HUMAN [22–51] on insulin mRNA expression and secretion in insulin-producing INS-1E cells and isolated rat pancreatic islets. Furthermore, we characterize the influence of GIP_HUMAN [22–51] on cell proliferation and death and on Nf-kB nuclear translocation. Rat insulin-producing INS-1E cells and pancreatic islets, isolated from male Wistar rats, were used in this study. Gene expression was evaluated using real-time PCR. Cell proliferation was studied using a BrdU incorporation assay. Cell death was quantified by evaluating histone-complexed DNA fragments. Insulin secretion was determined using an ELISA test. Nf-kB nuclear translocation was detected using immunofluorescence. GIP_HUMAN [22–51] suppressed insulin (Ins1 and Ins2) in INS-1E cells and pancreatic islets. Moreover, GIP_HUMAN [22–51] promoted the translocation of NF-κB from cytoplasm to the nucleus. In the presence of a pharmacological inhibitor of NF-κB, GIP_HUMAN [22–51] was unable to suppress Ins2 mRNA expression. Moreover, GIP_HUMAN [22–51] downregulated insulin secretion at low (2.8 mmol/L) but not high (16.7 mmol/L) glucose concentration. By contrast, GIP_HUMAN [22–51] failed to affect cell proliferation and apoptosis. We conclude that GIP_HUMAN [22–51] suppresses insulin expression and secretion in pancreatic β cells without affecting β cell proliferation or apoptosis. Notably, the effects of GIP_HUMAN [22–51] on insulin secretion are glucose-dependent

    Daily Treatment of Mice with Type 2 Diabetes with Adropin for Four Weeks Improves Glucolipid Profile, Reduces Hepatic Lipid Content and Restores Elevated Hepatic Enzymes in Serum

    No full text
    Adropin is a peptide hormone encoded by Energy Homeostasis Associated gene. Adropin modulates energy homeostasis and metabolism of lipids and carbohydrates. There is growing evidence demonstrating that adropin enhances insulin sensitivity and lowers hyperlipidemia in obese mice. The aim of this study was to investigate the effects of daily administration of adropin for four weeks in mice with experimentally induced type 2 diabetes (T2D). Adropin improved glucose control without modulating insulin sensitivity. Adropin reduced body weight, size of adipocytes, blood levels of triacylglycerol and cholesterol in T2D mice. T2D mice treated with adropin had lower liver mass, reduced hepatic content of triacylglycerol and cholesterol. Furthermore, adropin attenuated elevated blood levels of hepatic enzymes (ALT, AST, GGT and ALP) in T2D mice. In T2D mice, adropin increased the circulating adiponectin level. Adropin had no effects on circulating insulin and glucagon levels and did not alter pancreatic islets morphology. These results suggest that adropin improves glucose control, lipid metabolism and liver functions in T2D. In conjunction with reduced lipid content in hepatocytes, these results render adropin as an interesting candidate in therapy of T2D

    Changes in MOTS-c Level in the Blood of Pregnant Women with Metabolic Disorders

    No full text
    MOTS-c peptide is a member of the group of mitochondria-derived peptides (MDP). It is a product of the open reading frame in the 12S RNA gene. Due to its features and functions in the body, this peptide is classified as a hormone. The first publications indicated that this hormone improves insulin sensitivity and lowers body weight in obese animals. This suggests that it may be an important peptide in maintaining the body’s energy homeostasis. The aim of our work was to investigate the potential role of MOTS-c peptide during pregnancy, which is a condition prone to metabolic disorders. The research covered healthy, obese women and women with thyroid disorders. The obtained results indicated an increase in the concentration of MOTS-c in the blood of mothers and newborns in the obese group as compared to the healthy control group and a corresponding decrease in the concentration of this peptide in mothers and newborns in the group with hypothyroidism compared to the obese group. Moreover, we also observed a strong positive correlation between the concentration of MOTS-c in maternal blood and in umbilical cord blood. In summary, the MOTS-c peptide shows changes in blood concentration in various physiological states and may, in the future, become an important tool in the fight against metabolic diseases such as obesity or type 2 diabetes
    corecore