7 research outputs found

    MgO nanoparticles: Synthesis, characterization, and applications as a catalyst for organic transformations

    Get PDF
    Currently, the size and shape selective synthesis of nanoparticles (NPs) and their varied catalytic applications are gaining significant enthusiasm in the field of nanochemistry. Homogeneous catalysis is crucial due to its inherent benefits like high selectivity and mild reaction conditions. Nevertheless, it endures with serious disadvantages of catalysts and/or product separation/recycles compared to their heterogeneous counterparts restricting their catalytic applications. The utilization of catalysts in the form of nano-size is an elective methodology for the combination of merits of homogeneous and heterogeneous catalysis. Magnesium oxide (MgO) NPs are important as they find applications for catalysis, organic transformation, and synthesis of fine chemicals and organic intermediates. The applications of MgO NPs in diverse organic transformations including oxidation, reduction, epoxidation, condensation, and C-C, C-N, C-O, C-S bond formation in a variety of notable heterocyclic reactions are also discussed. The use of MgO NPs in organic transformation is advantageous as it mitigates the use of ligands; the procurable separation of catalyst for recyclability makes the protocol heterogeneous and monetary. MgO NPs gave efficacious catalytic performance towards the desired products due to high surface area. By considering these efficient merits, scientists have focused their attentions towards stupendous applications of MgO NPs in selective organic transformation. In the current review article, we summarized the synthesis of MgO NPs and numerous characterization techniques, whereas the application section illustrates their utility as a catalyst in several organic transformations. We believe this decisive appraisal will provide imperative details to further advance the application of MgO NPs in selective catalysis

    Microwave-assisted additive free synthesis of nanocrystalline zinc oxide

    Get PDF
    An additive free synthesis of nanocrystalline zinc oxide using microwave technique is reported. Current methodology is faster, cleaner and cost effective compared with conventional method for the synthesis of zinc oxide nanocrystalline materials. The structure and morphology of nanocrystalline zinc oxide was investigated by TEM, XRD, EDAX, UV-Vis spectroscopy. The results demonstrate that microwave heating can produce polygonal zinc oxide within a short span of time

    A review on environmentally benevolent synthesis of CdS nanoparticle and their applications

    No full text
    The word ‘Nano’ received great attention of world, due to their fabulous and novel applications in numerous fields. Cadmium sulphide nanoparticles (CdS NPs) are unique in their properties due the size and shape, and are popular in the area of biosensor, bio-imaging, nano-medicine, molecular pathology, antimicrobial activities, photovoltaic cells, semiconductor, and drug delivery, etc. Due to its fascinating applications, it was synthesized using several methods and explored for its all possible applications. The most affordable, efficient, friendly and biocompatible way of creation of CdS NPs is biogenic synthesis using microorganisms such as bacteria, fungus, algae, enzymes, proteins and parts of plants. In biogenic synthesis of CdS, cadmium undergoes bio-reduction by the variety of natural products present in microorganism as well as in plants. In present review, inclusive study was piloted on the nano-synthesis, characterization and various applications of CdS NPs made using different plant sources and microorganism
    corecore