215 research outputs found

    Probing the models: Abundances for high-mass stars in binaries

    Full text link
    The complexity of composite spectra of close binary star system makes study of the spectra of their component stars extremely difficult. For this reason there exists very little information on the photospheric chemical composition of stars in close binaries, despite its importance for informing our understanding of the evolutionary processes of stars. In a long-term observational project we aim to fill this gap with systematic abundance studies for the variety of binary systems. The core of our analysis is the spectral disentangling technique, which allows isolation of the individual component star spectra from the time-series of observed spectra. We present new results for high-mass stars in close binaries. So far, we have measured detailed abundances for 22 stars in a dozen detached binary systems. The parameter space for the stars in our sample comprises masses in the range 8--22 M_sun, surface gravities of 3.1--4.2 (c.g.s.) and projected rotational velocities of 30--240 km/s. Whilst recent evolutionary models for rotating single stars predict changes in photospheric abundances even during the main sequence lifetime, no star in our sample shows signs of these predicted changes. It is clear that other effects prevail in the chemical evolution of components in binary stars even at the beginning of their evolution.Comment: 8 pages, 3 figures, to appear in the proceedings of the conference on 'Setting a New Standard in the Analysis of Binary Stars', K. Pavlovski, A. Tkachenko and G. Torres, eds., EAS Publication Serie

    Modelling of the B-type binaries CW Cep and U Oph: A critical view on dynamical masses, core boundary mixing, and core mass

    Full text link
    Context: Intermediate-Mass stars are often overlooked as they are not supernova progenitors but still host convective cores and complex atmospheres which require computationally expensive treatment. Due to this, there is a general lack of such stars modelled by state of the art stellar structure and evolution codes. Aims: This paper aims to use high-quality spectroscopy to update the dynamically obtained stellar parameters and produce a new evolutionary assessment of the bright B0.5+B0.5 and B5V+B5V binary systems CW Cep and U Oph. Methods: We use new spectroscopy obtained with the Hermes spectrograph to revisit the photometric binary solution of the two systems. The updated mass ratio and effective temperatures are incorporated to obtain new dynamical masses for the primary and secondary. With these, we perform isochrone-cloud based evolutionary modelling to investigate the core properties of these stars. Results: We report the first abundances for CW Cep and U Oph as well as report an updated dynamical solution for both systems. We find that we cannot uniquely constrain the amount of core boundary mixing in any of the stars we consider. Instead, we report their core masses and compare our results to previous studies. Conclusions: We find that the per-cent level precision on fundamental stellar quantities are accompanied with core mass estimates to between ~ 5-15%. We find that differences in analysis techniques can lead to substantially different evolutionary modeComment: 15 pages, 7 figures, two appendices with 4 figures each. Accepted for publication in Astronomy & Astrophysic

    Quantitative spectroscopy of close binary stars

    Full text link
    The method of spectral disentangling has now created the opportunity for studying the chemical composition in previously inaccessible components of binary and multiple stars. This in turn makes it possible to trace their chemical evolution, a vital aspect in understanding the evolution of stellar systems. We review different ways to reconstruct individual spectra from eclipsing and non-eclipsing systems, and then concentrate on some recent applications to detached binaries with high-mass and intermediate-mass stars, and Algol-type mass-transfer systems.Comment: To appear in the Proceedings of IAU Symposium 282 'From Interacting Binaries to Exoplanets: Essential Modeling Tools

    Absolute dimensions of detached eclipsing binaries. III. The metallic-lined system YZ Cassiopeiae

    Full text link
    The bright binary system YZ Cassiopeiae is a remarkable laboratory for studying the Am phenomenon. It consists of a metallic-lined A2 star and an F2 dwarf on a circular orbit, which undergo total and annular eclipses. We present an analysis of 15 published light curves and 42 new high-quality echelle spectra, resulting in measurements of the masses, radii, effective temperatures and photospheric chemical abundances of the two stars. The masses and radii are measured to 0.5% precision: M_A = 2.263 +/- 0.012 Msun, M_B = 1.325 +/- 0.007 Msun, R_A = 2.525 +/- 0.011 Rsun and R_B = 1.331 +/- 0.006 Rsun. We determine the abundance of 20 elements for the primary star, of which all except scandium are super-solar by up to 1 dex. The temperature of this star (9520 +/- 120 K) makes it one of the hottest Am stars. We also measure the abundances of 25 elements for its companion (Teff = 6880 +/- 240 K), finding all to be solar or slightly above solar. The photospheric abundances of the secondary star should be representative of the bulk composition of both stars. Theoretical stellar evolutionary models are unable to match these properties: the masses, radii and temperatures imply a half-solar chemical composition (Z = 0.009 +/- 0.003) and an age of 490-550 Myr. YZ Cas therefore presents a challenge to stellar evolutionary theory.Comment: Accepted for publication in MNRAS. 15 pages, 9 tables, 7 figure

    Abundances from disentangled component spectra: the eclipsing binary V578 Mon

    Full text link
    Chemical abundances of the early-B type components of the binary V578 Mon are derived from disentangled component spectra. This is a pilot study showing that, even with moderately high line-broadening, metal abundances can be derived from disentangled spectra with a precision 0.1 dex, relative to sharp-lined single stars of the same spectral type. This binary is well-suited for such an assessment because of its youth as a member of the Rosette Nebula cluster NGC 2244, strengthening the expectation of an unevolved ZAMS chemical composition. The method is of interest to study rotational driven mixing in main-sequence stars, with fundamental stellar parameters known with higher accuracy in (eclipsing) binaries. The paper also includes an evaluation of the bias that might be present in disentangled spectra.Comment: Accepted for publication in Astronomy & Astrophysics, 8 pages, 2 figure

    CoRoT 102918586: a Gamma Dor pulsator in a short period eccentric eclipsing binary

    Full text link
    Pulsating stars in eclipsing binary systems are powerful tools to test stellar models. Binarity enables to constrain the pulsating component physical parameters, whose knowledge drastically improves the input physics for asteroseismic studies. The study of stellar oscillations allows us, in its turn, to improve our understanding of stellar interiors and evolution. The space mission CoRoT discovered several promising objects suitable for these studies, which have been photometrically observed with unprecedented accuracy, but needed spectroscopic follow-up. A promising target was the relatively bright eclipsing system CoRoT 102918586, which turned out to be a double-lined spectroscopic binary and showed, as well, clear evidence of Gamma Dor type pulsations. We obtained phase resolved high-resolution spectroscopy with the Sandiford spectrograph at the McDonald 2.1m telescope and the FEROS spectrograph at the ESO 2.2m telescope. Spectroscopy yielded both the radial velocity curves and, after spectra disentangling, the component effective temperatures, metallicity and line-of-sight projected rotational velocities. The CoRoT light curve was analyzed with an iterative procedure, devised to disentangle eclipses from pulsations. We obtained an accurate determination of the system parameters, and by comparison with evolutionary models strict constraints on the system age. Finally, the residuals obtained after subtraction of the best fitting eclipsing binary model were analyzed to determine the pulsator properties. We achieved a quite complete and consistent description of the system. The primary star pulsates with typical {\gamma} Dor frequencies and shows a splitting in period which is consistent with high order g-mode pulsations in a star of the corresponding physical parameters. The value of the splitting, in particular, is consistent with pulsations in l = 1 modes.Comment: 12 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Physical properties and CNO abundances for high-mass stars in four main-sequence detached eclipsing binaries: V478 Cyg, AH Cep, V453 Cyg, and V578 Mon

    Get PDF
    We present ten high-precision light curves of four transits in the XO-1 planetary system, obtained using u, g, r, redshifted Hα, I and z filters. We use these to measure the physical properties, orbital ephemeris, and a transmission spectrum of the planet covering the full optical wavelength range. We augment this with published HST/WFC3 observations to construct a transmission spectrum of the planet covering 0.37 to 1.65 μm. Our best-fitting model to this spectrum is for a H2/He-rich atmosphere containing water (3.05σ confidence), nitrogen-bearing molecules NH3 and HCN (1.5σ) and patchy cloud (1.3σ). We find that adding the optical to the near-infrared data does not lead to more precise constraints on the planetary atmosphere in this case. We conduct a detailed investigation into the effect of stellar limb darkening on our results, concluding that the choice of limb darkening law and coefficients is unimportant; such conclusions may not hold for other systems so should be reassessed for all high-quality datasets. The planet radius we measure in the g-band is anomalously low and should be investigated with future observations at a higher spectral resolution. From the measured times of transit we determine an improved orbital ephemeris, calculate a lower limit on the modified stellar tidal quality factor of Q′⋆>105.6, and rule out a previously postulated sinusoidal variation in the transit times
    corecore