1,065 research outputs found
Pseudospin dynamics in multimode polaritonic Josephson junctions
We analyzed multimode Josephson junctions with exciton-polaritons
(polaritonic Josephson junctions) when several coupling mechanisms of
fundamental and excited states are present. The applied method is based on
Keldysh-Green function formalism and takes into account polariton pseudospin.
We found that mean value of circular polarization degree in intrinsic Josephson
oscillations and microscopic quantum self-trapping follow an oscillator
behavior whose renormalizes due to intermode interactions. The effect of an
additional transfer of particles over junction barrier occurring in multimode
approximation in combination with common Josephson tunneling is discussed in
regime of dynamical separation of two polarizations.Comment: 12 pages, 4 figure
Proposal for a Mesoscopic Optical Berry-Phase Interferometer
We propose a novel spin-optronic device based on the interference of
polaritonic waves traveling in opposite directions and gaining topological
Berry phase. It is governed by the ratio of the TE-TM and Zeeman splittings,
which can be used to control the output intensity. Because of the peculiar
orientation of the TE-TM effective magnetic field for polaritons, there is no
analogue of the Aharonov- Casher phase shift existing for electrons.Comment: 4 page
Nanohybrid Layered Double Hydroxides Used to Remove Several Dyes from Water
For the preparation and characterization of several layer double hydroxides (LDH) with inorganic interlayer anions (carbonate and nitrate) and nanohybrids, two organo-LDHs were studied in detail. The dodecylbenzene sulfonate (DBS) was used as an organic interlayer anion to modify the hydrophilic nature of the interlayer. The aim of the modification of the layered double hydroxides (LDH) was to change the hydrophilic character of the interlayer to hydrophobic with the purpose of improving its ability to adsorb several (anionic and cationic) dyes from water. These compounds have been used as adsorbents of amaranth (Am), diamine green B (DGB) and brilliant green (BG) dyes. Adsorption tests were conducted using variable pH values, contact times and initial dye concentrations (adsorption isotherms) to identify the optimum conditions for the intended purpose. Adsorbents and adsorption products were characterized by several physicochemical techniques. The results of the adsorption tests showed that the organo-LDH nanohybrids could be efficient adsorbents in the removal of studied dyes from water. Thus, it can be concluded that nanohybrids studied in this work might act as suitable supports in the design of adsorbents for the removal of a wide spectrum of dyes with the aim of reducing the adverse effects on water resources
Steps towards the development of an experimentally verified simulation of pool nucleate boiling on a silicon wafer with artificial sites
Nucleate boiling is a very effective heat transfer cooling process, used in numerous industrial applications. Despite intensive research over decades, a reliable model of nucleate pool boiling is still not available. This paper presents a numerical and experimental investigation of nucleate boiling from artificial nucleation sites.
The numerical investigation described in the first section of the paper is carried out by a hybrid mechanistic numerical code first developed at the University of Ljubljana to simulate the temperature field in a heated stainless steel plate with a large number of nucleation sites during pool boiling of water at atmospheric pressure. It is now being redeveloped to interpret experiments on pool boiling at artificial sites on a silicon plate and as a design tool to investigate different arrangements of sites to achieve high heat fluxes. The code combines full simulation of the temperature field in the solid wall with simplified models or correlations for processes in the liquid-vapour region. The current capabilities and limitations of the code are reviewed and improvements are discussed. Examples are given of the removal of computational constraints on the activation of sites in close proximity and improvements to the bubble growth model. Preliminary simulations are presented to compare the wall conditions to be used in the experiments on silicon at Edinburgh University with the conditions in current experiments on thin metal foils at Ljubljana.
An experimental rig for boiling experiments with artificial cavities on a 0.38 mm thick silicon wafer immersed in FC-72, developed at Edinburgh University, is described in the second part of the paper
Simulation and experimental investigation of pool boiling on a silicon wafer with artificial nucleation sites
This paper reports progress on a project to develop a design tool for large arrays of nucleation sites at specified locations to achieve high rates of cooling by pool boiling. The tool will be based on an improved version of a hybrid simulation, in which the 3-D temperature field in the wall is solved numerically, along with simple sub-models for bubble-driven heat transfer that require experimental calibration. Improvements to the computer code and progress with the experiments are reported briefly. The paper focuses on the development of a sub-model for the lateral coalescence of bubbles, which is shown to cause irregularity in the bubble production by a regular array of nucleation sites
Collisional properties of cold spin-polarized nitrogen gas: theory, experiment, and prospects as a sympathetic coolant for trapped atoms and molecules
We report a combined experimental and theoretical study of collision-induced
dipolar relaxation in a cold spin-polarized gas of atomic nitrogen (N). We use
buffer gas cooling to create trapped samples of 14N and 15N atoms with
densities 5+/-2 x 10^{12} cm-3 and measure their magnetic relaxation rates at
milli-Kelvin temperatures. Rigorous quantum scattering calculations based on
accurate ab initio interaction potentials for the 7Sigma_u electronic state of
N2 demonstrate that dipolar relaxation in N + N collisions occurs at a slow
rate of ~10^{-13} cm3/s over a wide range of temperatures (1 mK to 1 K) and
magnetic fields (10 mT to 2 T). The calculated dipolar relaxation rates are
insensitive to small variations of the interaction potential and to the
magnitude of the spin-exchange interaction, enabling the accurate calibration
of the measured N atom density. We find consistency between the calculated and
experimentally determined rates. Our results suggest that N atoms are promising
candidates for future experiments on sympathetic cooling of molecules.Comment: 48 pages, 17 figures, 3 table
Electric generation of vortices in an exciton-polariton superfluid
We have theoretically demonstrated the on demand electric generation of
vortices in an exciton-polariton superfluid. Electric pulses applied to a
horseshoe-shaped metallic mesa, deposited on top of the microcavity, generate a
non-cylindrically symmetric solitonic wave in the system. Breakdown of its
wavefront at focal points leads to the formation of vortex-antivortex pairs
which subsequently propagate in the superfluid. The trajectory of these vortex
dipoles can be controlled by applying a voltage to additional electrodes. They
can be confined within channels formed by metallic stripes and unbound by a
wedged mesa giving birth to grey solitons. Finally single static vortices can
be generated using a single metallic plate configuration.Comment: 7 pages and 7 figure
Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity
We show theoretically that entangled photon pairs can be produced on demand
through the biexciton decay of a quantum dot strongly coupled to the modes of a
photonic crystal. The strong coupling allows to tune the energy of the mixed
exciton-photon (polariton) eigenmodes, and to overcome the natural splitting
existing between the exciton states coupled with different linear polarizations
of light. Polariton states are moreover well protected against dephasing due to
their lifetime ten to hundred times shorter than that of a bare exciton. Our
analysis shows that the scheme proposed can be achievable with the present
technology
ZnO on rice husk: a sustainable photocatalyst for urban air purification
A cost-effective and sustainable De-NOx photocatalyst is prepared usingzinc acetate and rice husk. ZnO@SiO2samples are obtained from the calcination of a homogenised precursor mixture at 600 C. ZnO nanoparticles (70 –180 nm) grow aggregated in spheres and well dispersed (40 –53 m2g-1surface area) covering the silicon skeleton. The corresponding band gap for ZnO@SiO2photocatalysts was estimated at3.1 –3.2 eV. When the samples are irradiated by sunlight in anitrogen oxide atmosphere the NO HNO2NO2NO3-photochemical oxidation takes place. In comparison to unsupported ZnO and TiO2-P25, ZnO@SiO2samples exhibit high NOXremoval values (70 %) and outstanding selectivity (> 90%), the latter related to the sensitivity of zinc oxide towards NO2gas. This new photocatalyst is easily recyclable and reusabl
- …