7,269 research outputs found

    Search for the Optical Counterpart of the Vela Pulsar X-ray Nebula

    Full text link
    Observations of the Vela pulsar region with the Chandra X-ray observatory have revealed the fine structure of its synchrotron pulsar-wind nebula (PWN), which showed an overall similarity with the Crab PWN. However, contrary to the Crab, no firm detection of the Vela PWN in optical has been reported yet. To search for the optical counterpart of the X-ray PWN, we analyzed deep optical observations performed with different telescopes. We compared the optical images with those obtained with the Chandra ACIS to search for extended emission patterns which could be identified as counterparts of the X-ray nebula elements. Although some features are seen in the optical images, we find no correlation with the X-ray structure. Thus, we conclude that the diffuse optical emission is more likely associated with filaments in the host Vela SNR. The derived upper limits on the optical flux from the PWN are compatibile, within the uncertainties, with the values expected on the basis of the extrapolations of the X-ray data.Comment: 19 pages, 6 figures. Accepted for publication in Ap

    Polarization of Thermal X-rays from Isolated Neutron Stars

    Get PDF
    Since the opacity of a magnetized plasma depends on polarization of radiation, the radiation emergent from atmospheres of neutron stars with strong magnetic fields is expected to be strongly polarized. The degree of linear polarization, typically ~10-30%, depends on photon energy, effective temperature and magnetic field. The spectrum of polarization is more sensitive to the magnetic field than the spectrum of intensity. Both the degree of polarization and the position angle vary with the neutron star rotation period so that the shape of polarization pulse profiles depends on the orientation of the rotational and magnetic axes. Moreover, as the polarization is substantially modified by the general relativistic effects, observations of polarization of X-ray radiation from isolated neutron stars provide a new method for evaluating the mass-to-radius ratio of these objects, which is particularly important for elucidating the properties of the superdense matter in the neutron star interiors.Comment: 7 figures, to be published in Ap

    X-ray emission from PSR B1800-21, its wind nebula, and similar systems

    Get PDF
    We detected X-ray emission from PSR B1800-21 and its synchrotron nebula with the Chandra X-ray Observatory. The pulsar's observed flux is (1.4+/-0.2) 10^{-14} ergs cm^{-2} s^{-1} in the 1-6 keV band. The spectrum can be described by a two-component PL+BB model, suggesting a mixture of thermal and magnetospheric emission. For a plausible hydrogen column density n_{H}=1.4 10^{22} cm^{-2}, the PL component has a slope Gamma=1.4+/-0.6 and a luminosity L_{psr}^{nonth}=4 10^{31}(d/4 kpc)^2 ergs s^{-1}. The properties of the thermal component (kT=0.1-0.3 keV, L^{bol}=10^{31}-10^{33} ergs s^{-1}) are very poorly constrained because of the strong interstellar absorption. The compact, 7''\times4'', inner pulsar-wind nebula (PWN), elongated perpendicular to the pulsar's proper motion, is immersed in a fainter asymmetric emission. The observed flux of the PWN is (5.5+/-0.6) 10^{-14} ergs cm^{-2} s^{-1} in the 1-8 keV band. The PWN spectrum fits by a PL model with Gamma=1.6+/-0.3, L=1.6 10^{32} (d/4 kpc})^2 ergs s^{-1}. The shape of the inner PWN suggests that the pulsar moves subsonically and X-ray emission emerges from a torus associated with the termination shock in the equatorial pulsar wind. The inferred PWN-pulsar properties (e.g., the PWN X-ray efficiency, L_{pwn}/\dot{E}~10^{-4}; the luminosity ratio, L_{pwn}/L_{psr}^{nonth}=4; the pulsar wind pressure at the termination shock, p_s=10^{-9} ergs cm^{-3}) are very similar to those of other subsonically moving Vela-like objects detected with Chandra (L_{pwn}/\dot{E}=10^{-4.5}-10^{-3.5}, L_{pwn}/L_{psr}^{nonth}~5, p_s=10^{-10}-10^{-8} ergs cm^{-1}).Comment: 11 pages, 10 figures, 2 tables; submitted to ApJ. Version with the high-resolution figures is available at http://www.astro.psu.edu/users/green/B1800/B1800_ApJ.pd

    The X-ray Spectrum of the Vela Pulsar Resolved with Chandra

    Full text link
    We report the results of the spectral analysis of two observations of the Vela pulsar with the Chandra X-ray observatory. The spectrum of the pulsar does not show statistically significant spectral lines in the observed 0.25-8.0 keV band. Similar to middle-aged pulsars with detected thermal emission, the spectrum consists of two distinct components. The softer component can be modeled as a magnetic hydrogen atmosphere spectrum - for the pulsar magnetic field B=3×1012B=3\times 10^{12} G and neutron star mass M=1.4MM=1.4 M_\odot and radius R=13R^\infty =13 km, we obtain \tef^\infty =0.68\pm 0.03 MK, Lbol=(2.6±0.2)×1032L_{\rm bol}^\infty = (2.6\pm 0.2)\times 10^{32} erg s1^{-1}, d=210±20d=210\pm 20 pc (the effective temperature, bolometric luminosity, and radius are as measured by a distant observer). The effective temperature is lower than that predicted by standard neutron star cooling models. A standard blackbody fit gives T=1.49±0.04T^\infty =1.49\pm 0.04 MK, Lbol=(1.5±0.4)×1032d2502L_{\rm bol}^\infty=(1.5\pm 0.4)\times 10^{32} d_{250}^2 erg s1^{-1} (d250d_{250} is the distance in units of 250 pc); the blackbody temperature corresponds to a radius, R=(2.1±0.2)d250R^\infty =(2.1\pm 0.2) d_{250} km, much smaller than realistic neutron star radii. The harder component can be modeled as a power-law spectrum, with parameters depending on the model adopted for the soft component - γ=1.5±0.3\gamma=1.5\pm 0.3, Lx=(1.5±0.4)×1031d2502L_x=(1.5\pm 0.4)\times 10^{31} d_{250}^2 erg s1^{-1} and γ=2.7±0.4\gamma=2.7\pm 0.4, Lx=(4.2±0.6)×1031d2502L_x=(4.2\pm 0.6)\times 10^{31} d_{250}^2 erg s1^{-1} for the hydrogen atmosphere and blackbody soft component, respectively (γ\gamma is the photon index, LxL_x is the luminosity in the 0.2--8 keV band). The extrapolation of the power-law component of the former fit towards lower energies matches the optical flux at γ1.35\gamma\simeq 1.35--1.45.Comment: Submitted to ApJ, three figures; color figure 1 can be found at http://www.xray.mpe.mpg.de/~zavlin/pub_list.htm

    Particles with negative energies in black holes

    Full text link
    The problem of the existence of particles with negative energies inside and outside of Schwarzschild, charged and rotating black holes is investigated. Different definitions of the energy of the particle inside the Schwarzschild black hole are analyzed and it is shown in what cases this energy can be negative. A comparison is made for the cases of rotating black holes described by the Kerr metric when the energy of the particle can be negative in the ergosphere and the Reissner-Nordstrom metric.Comment: 10 pages, 2 figures, typos correction to match published versio

    Light Curves of Rapidly Rotating Neutron Stars

    Get PDF
    We consider the effect of rapid rotation on the light curves of neutron stars with hot polar caps. For P3P \approx 3ms spin periods, the pulse fractions can be as much as an order of magnitude larger than with simple slowly-rotating (Schwarzschild) estimates. Doppler boosting, in particular, leads to characteristic distortion and ``soft lags'' in the pulse profiles, which are easily measurable in light curves with moderate energy resolution. With 105\sim 10^5 photons it should also be possible to isolate the more subtle distortions of light travel time variations and frame dragging. Detailed analysis of high quality millisecond pulsar data from upcoming X-ray missions must include these effects

    Operator interpretation of resonances generated by some operator matrices

    Full text link
    We consider the analytic continuation of the transfer function for a 2x2 matrix Hamiltonian into the unphysical sheets of the energy Riemann surface. We construct a family of non-selfadjoint operators which reproduce certain parts of the transfer-function spectrum including resonances situated on the unphysical sheets neighboring the physical sheet. On this basis, completeness and basis properties for the root vectors of the transfer function (including those for the resonances) are proved.Comment: LaTeX, 15 pages, no figures; Contribution to Proceedings of the Mark Krein International Conference on Operator Theory and Applications, Odessa, August 18-22, 199

    The Compact Central Object in Cas A: A Neutron Star with Hot Polar Caps or a Black Hole?

    Get PDF
    The central pointlike X-ray source of the Cas A supernova remnant was discovered in the Chandra First Light Observation and found later in the archival ROSAT and Einstein images. The analysis of these data does not show statistically significant variability of the source. The power-law fit yields the photon index 2.6-4.1, and luminosity (2-60)e34 erg/s, for d=3.4 kpc. The power-law index is higher, and the luminosity lower, than those observed fromvery young pulsars. One can fit the spectrum equally well with a blackbody model with T=6-8 MK, R=0.2-0.5 km, L=(1.4-1.9)e33 erg/s. The inferred radii are too small, and the temperatures too high, for the radiationcould be interpreted as emitted from the whole surface of a uniformly heated neutron star. Fits with the neutron star atmosphere models increase the radius and reduce the temperature, but these parameters are still substantially different from those expected for a young neutron star. One cannot exclude, however, that the observed emission originates from hot spots on a cooler neutron star surface. Because of strong interstellar absorption, the possible low-temperature component gives a small contribution to the observed spectrum; an upper limit on the (gravitationally redshifted) surface temperature is < 1.9-2.3 MK. Amongst several possible interpretations, we favor a model of a strongly magnetized neutron star with magnetically confined hydrogen or helium polar caps on a cooler iron surface. Alternatively, the observed radiation may be interpreted as emitted by a compact object (more likely, a black hole) accreting from a fossil disk or from a late-type dwarf in a close binary.Comment: 12 pages, 2 figures, submitted to ApJ

    Helium in superstrong magnetic fields

    Get PDF
    We investigate the helium atom embedded in a superstrong magnetic field gamma=100-10000 au. All effects due to the finite nuclear mass for vanishing pseudomomentum are taken into account. The influence and the magnitude of the different finite mass effects are analyzed and discussed. Within our full configuration interaction approach calculations are performed for the magnetic quantum numbers M=0,-1,-2,-3, singlet and triplet states, as well as positive and negative z parities. Up to six excited states for each symmetry are studied. With increasing field strength the number of bound states decreases rapidly and we remain with a comparatively small number of bound states for gamma=10^4 au within the symmetries investigated here.Comment: 16 pages, including 14 eps figures, submitted to Phys. Rev.

    1+1 spectral problems arising from the Manakov-Santini system

    Full text link
    This paper deals with the spectral problem of the Manakov Santini system. The point Lie symmetries of the Lax pair have been identified. Several similarity reductions arise from these symmetries. An important benefit of our procedure is that the study of the Lax pair instead of the partial differential equations yields the reductions of the eigenfunctions and also the spectral parameter. Therefore, we have obtained five interesting spectral problems in 1+1 dimensions
    corecore