656 research outputs found

    Detection of the primary scintillation light from dense Ar, Kr and Xe with novel photosensitive gaseous detectors

    Get PDF
    The detection of primary scintillation light in combination with the charge or secondary scintillation signals is an efficient technique to determine the events t=0 as well as particle / photon separation in large mass TPC detectors filled with noble gases and/or condensed noble gases. The aim of this work is to demonstrate that costly photo-multipliers could be replaced by cheap novel photosensitive gaseous detectors: wire counters, GEMs or glass capillary tubes coupled with CsI photocathodes. We have performed systematic measurements with Ar, Kr and Xe gas at pressures in the range of 1-50 atm as well as some preliminary measurements with liquid Xe and liquid Ar. With the gaseous detectors we succeeded in detecting scintillation light produced by 22 keV X-rays with an efficiency of close to 100%. We also detected the scintillation light produced by bs (5 keV deposit energy) with an efficiency close to 25%. Successful detection of scintillation from 22 keV gammas open new experimental possibilities not only for nTOF and ICARUS experiments, but also in others, like WIMPs search through nuclear recoil emission

    The Successful Operation of Hole-type Gaseous Detectors at Cryogenic Temperatures

    Full text link
    We have demonstrated that hole-type gaseous detectors, GEMs and capillary plates, can operate up to 77 K. For example, a single capillary plate can operate at gains of above 10E3 in the entire temperature interval between 300 until 77 K. The same capillary plate combined with CsI photocathodes could operate perfectly well at gains (depending on gas mixtures) of 100-1000. Obtained results may open new fields of applications for capillary plates as detectors of UV light and charge particles at cryogenic temperatures: noble liquid TPCs, WIMP detectors or LXe scintillating calorimeters and cryogenic PETs.Comment: Presented at the IEEE Nuclear Science Symposium, Roma, 200

    Novel Single Photon Detectors for UV Imaging

    Full text link
    There are several applications which require high position resolution UV imaging. For these applications we have developed and successfully tested a new version of a 2D UV single photon imaging detector based on a microgap RPC. The main features of such a detectors is the high position resolution - 30 micron in digital form and the high quantum efficiency (1-8% in the spectral interval of 220-140 nm). Additionally, they are spark- protected and can operate without any feedback problems at high gains, close to a streamer mode. In attempts to extend the sensitivity of RPCs to longer wavelengths we have successfully tested the operation of the first sealed parallel-plate gaseous detectors with CsTe photocathodes. Finally, the comparison with other types of photosensitive detectors is given and possible fields of applications are identified.Comment: Presented at the 5th International Workshop on RICH detectors Playa del Carmen, Mexico, November 200

    A High Position Resolution X-ray Detector: an Edge on Illuminated Capillary Plate Combined with a Gas Amplification Structure

    Full text link
    We have developed and successfully tested a prototype of a new type of high position resolution hybrid X-ray detector. It contains a thin wall lead glass capillary plate converter of X-rays combined with a microgap parallel-plate avalanche chamber filled with gas at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0-90 degree. The detection efficiency, depending on the geometry, photon energy, incident angle and the mode of operation, was between 5-30 percent in a single step mode and up to 50 percent in a multi-layered combination. Depending on the capillary geometry, the position resolution achieved was between 0.050-0.250 mm in digital form and was practically independent of the photon energy or gas mixture. The usual lead glass capillary plates operated without noticeable charging up effects at counting rates of 50 Hz/mm2, and hydrogen treated capillaries up to 10E5 Hz/mm2. The developed detector may open new possibilities for medical imaging, for example in mammography, portal imaging, radiography (including security devices), crystallography and many other applications.Comment: Presented at the IEEE Nuclear Science Symposium, Roma, Octber 200

    The development of gaseous detectors with solid photocathodes for low temperature

    Get PDF
    There are several applications and fundamental research areas which require the detection of VUV light at cryogenic temperatures. For these applications we have developed and successfully tested special designs of gaseous detectors with solid photocathodes able to operate at low temperatures: sealed gaseous detectors with MgF2 windows and windowless detectors. We have experimentally demonstrated, that both primary and secondary (due to the avalanche multiplication inside liquids) scintillation lights could be recorded by photosensitive gaseous detectors. The results of this work may allow one to significantly improve the operation of some noble liquid gas TPCs.Comment: Presented at the X Vienna Conference on Instumentation, Vienna, February 200
    • …
    corecore