2 research outputs found

    Formation of A Complete Stress-strain Curve of Concrete Using Digital Image Corellation

    Get PDF
    This paper reports the development and verification of a new procedure for formation of a complete stress-strain curve of concrete with a downward region of strain by using a digital image correlation method. A new technique to build spectle patterns on the surface of concrete is described. That makes it possible to accurately enough reproduce the spectle patterns on the surface of concrete and perform a high-quality analysis of strains involving digital image correlation. The advantages of this research technique have been established when predicting the formation of internal cracks in concrete followed by their propagation. In addition, using the digital image correlation methodology makes it possible to obtain strains of the entire studied plane of the sample at each stage of loading. This procedure provides an opportunity to investigate a change in strains and the movement of individual points or areas when studying concrete surfaces. That is a relevant issue as it enables more detailed diagnostics of existing reinforced concrete structures. To check the accuracy of this procedure application, a mechanical gauge with an accuracy of 0.001 mm was additionally installed. 2 high-speed monochrome CCD cameras with different lenses were used in determining concrete strains involving the digital image correlation technique. The deformations were controlled with a period of time every 250 ms. The load was controlled by an additional third camera with a speed of 50 frames/second. The result of the experimental study is the formed full concrete destruction diagram with a downward region of strain. The deviation of the results of strains based on the mechanical gauge with an accuracy of 0.001 mm with a base of 200 mm from those acquired by the digital image correlation procedure was mainly up to 10 %, which confirms the reliability of the results. The results of this work allow a more accurate calculation of reinforced concrete structures in the practice of design, inspection, or reinforcement of existing structure

    Procedure for Determining the Thermoelastic State of A Reinforced Concrete Bridge Beam Strengthened with Methyl Methacrylate

    Full text link
    This paper reports the analysis of methods for determining temperature stresses and deformations in bridge structures under the influence of climatic temperature changes in the environment. A one-dimensional model has been applied to determine the temperature field and thermoelastic state in order to practically estimate the temperature fields and stresses of strengthened beams taking into consideration temperature changes in the environment. The temperature field distribution has been determined in the vertical direction of a reinforced concrete beam depending on the thickness of the structural reinforcement with methyl methacrylate. It was established that there is a change in the temperature gradient in a contact between the reinforced concrete beam and reinforcement. The distribution of temperature stresses in the vertical direction of a strengthened reinforced concrete beam has been defined, taking into consideration the thickness of the reinforcement with methyl methacrylate and the value of its elasticity module. It was established that the thickness of the reinforcement does not have a significant impact on increasing stresses while increasing the elasticity module of the structural reinforcement leads to an increase in temperature stresses. The difference in the derived stress values for a beam with methyl methacrylate reinforcement with a thickness of 10 mm and 20 mm, at elasticity module E=15,000 MPa, is up to 3 % at positive and negative temperatures. It has been found that there is a change in the nature of the distribution of temperature stresses across the height of the beam at the contact surface of the reinforced concrete beam and methyl methacrylate reinforcement. The value of temperature stresses in the beam with methyl methacrylate reinforcement and exposed to the positive and negative ambient temperatures increases by three times. It was established that the value of temperature stresses is affected by a difference in the temperature of the reinforced concrete beam and reinforcement, as well as the physical and mechanical parameters of the investigated structural materials of the beam and the structural reinforcement with methyl methacrylat
    corecore