6 research outputs found

    Feasibility of Inconspicuous GAN-generated Adversarial Patches against Object Detection

    Get PDF
    Standard approaches for adversarial patch generation lead to noisy conspicuous patterns, which are easily recognizable by humans. Recent research has proposed several approaches to generate naturalistic patches using generative adversarial networks (GANs), yet only a few of them were evaluated on the object detection use case. Moreover, the state of the art mostly focuses on suppressing a single large bounding box in input by overlapping it with the patch directly. Suppressing objects near the patch is a different, more complex task. In this work, we have evaluated the existing approaches to generate inconspicuous patches. We have adapted methods, originally developed for different computer vision tasks, to the object detection use case with YOLOv3 and the COCO dataset. We have evaluated two approaches to generate naturalistic patches: by incorporating patch generation into the GAN training process and by using the pretrained GAN. For both cases, we have assessed a trade-off between performance and naturalistic patch appearance. Our experiments have shown, that using a pre-trained GAN helps to gain realistic-looking patches while preserving the performance similar to conventional adversarial patches.Comment: Accepted for publication at the IJCAI 2022 AISafety worksho

    On the Engineering of AI-Powered Systems

    No full text

    Balancing Expert Utilization in Mixture-of-Experts Layers Embedded in CNNs

    Full text link
    This work addresses the problem of unbalanced expert utilization in sparsely-gated Mixture of Expert (MoE) layers, embedded directly into convolutional neural networks. To enable a stable training process, we present both soft and hard constraint-based approaches. With hard constraints, the weights of certain experts are allowed to become zero, while soft constraints balance the contribution of experts with an additional auxiliary loss. As a result, soft constraints handle expert utilization better and support the expert specialization process, hard constraints mostly maintain generalized experts and increase the model performance for many applications. Our findings demonstrate that even with a single dataset and end-to-end training, experts can implicitly focus on individual sub-domains of the input space. Experts in the proposed models with MoE embeddings implicitly focus on distinct domains, even without suitable predefined datasets. As an example, experts trained for CIFAR-100 image classification specialize in recognizing different domains such as sea animals or flowers without previous data clustering. Experiments with RetinaNet and the COCO dataset further indicate that object detection experts can also specialize in detecting objects of distinct sizes

    Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety

    No full text
    Deployment of modern data-driven machine learning methods, most often realized by deep neural networks (DNNs), in safety-critical applications such as health care, industrial plant control, or autonomous driving is highly challenging due to numerous model-inherent shortcomings. These shortcomings are diverse and range from a lack of generalization over insufficient interpretability and implausible predictions to directed attacks by means of malicious inputs. Cyber-physical systems employing DNNs are therefore likely to suffer from so-called safety concerns, properties that preclude their deployment as no argument or experimental setup can help to assess the remaining risk. In recent years, an abundance of state-of-the-art techniques aiming to address these safety concerns has emerged. This chapter provides a structured and broad overview of them. We first identify categories of insufficiencies to then describe research activities aiming at their detection, quantification, or mitigation. Our work addresses machine learning experts and safety engineers alike: The former ones might profit from the broad range of machine learning topics covered and discussions on limitations of recent methods. The latter ones might gain insights into the specifics of modern machine learning methods. We hope that this contribution fuels discussions on desiderata for machine learning systems and strategies on how to help to advance existing approaches accordingly
    corecore