4 research outputs found

    Safety perspectives on presently considered drugs for the treatment of COVID‐19

    Get PDF
    Intense efforts are underway to evaluate potential therapeutic agents for the treatment of COVID‐19. In order to respond quickly to the crisis, the repurposing of existing drugs is the primary pharmacological strategy. Despite the urgent clinical need for these therapies, it is imperative to consider potential safety issues. This is important due to the harm–benefit ratios that may be encountered when treating COVID‐19, which can depend on the stage of the disease, when therapy is administered and underlying clinical factors in individual patients. Treatments are currently being trialled for a range of scenarios from prophylaxis (where benefit must greatly exceed risk) to severe life‐threatening disease (where a degree of potential risk may be tolerated if it is exceeded by the potential benefit). In this perspective, we have reviewed some of the most widely researched repurposed agents in order to identify potential safety considerations using existing information in the context of COVID‐19

    Preparation and Thermal Stability of Elastomers Based on Irregular Poly(urethane-isocyanurate) Networks

    No full text
    The objective of this study was to investigate the thermal stability of poly(urethane-isocyanurate) networks with increasing amount of dangling chains. In order to improve thermal stability of elastomeric materials, networks were prepared by adding some heat resistant isocyanurate rings as a junction points by catalytic cyclotrimerisation of telechelic diisocyanates. The thermal degradation kinetics of samples has been studied by means of high-resolution thermal analyzer SDT Q600 TA Instruments, under nitrogen atmosphere. The activation energy for the two step reactions of thermal decomposition of different species was calculated and compared
    corecore