122 research outputs found

    Fast-Response Photonic Device Based on Organic-Crystal Heterojunctions Assembled into a Vertical-Yet-Open Asymmetric Architecture

    Get PDF
    Crystalline dioctyl-3,4,9,10-perylenedicarboximide nanowires and 6,13-bis(triisopropylsilylethynyl) pentacene microplates are integrated into a vertical-yet-open asymmetrical heterojunction for the realization of a high-performance organic photovoltaic detector, which shows fast photoresponse, ultrahigh signal-to-noise ratio, and high sensitivity to weak light

    Zicam-Induced Damage to Mouse and Human Nasal Tissue

    Get PDF
    Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc), a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction

    Hsp90 Inhibition Decreases Mitochondrial Protein Turnover

    Get PDF
    Cells treated with hsp90 inhibitors exhibit pleiotropic changes, including an expansion of the mitochondrial compartment, accompanied by mitochondrial fragmentation and condensed mitochondrial morphology, with ultimate compromise of mitochondrial integrity and apoptosis.We identified several mitochondrial oxidative phosphorylation complex subunits, including several encoded by mtDNA, that are upregulated by hsp90 inhibitors, without corresponding changes in mRNA abundance. Post-transcriptional accumulation of mitochondrial proteins observed with hsp90 inhibitors is also seen in cells treated with proteasome inhibitors. Detailed studies of the OSCP subunit of mitochondrial F1F0-ATPase revealed the presence of mono- and polyubiquitinated OSCP in mitochondrial fractions. We demonstrate that processed OSCP undergoes retrotranslocation to a trypsin-sensitive form associated with the outer mitochondrial membrane. Inhibition of proteasome or hsp90 function results in accumulation of both correctly targeted and retrotranslocated mitochondrial OSCP.Cytosolic turnover of mitochondrial proteins demonstrates a novel connection between mitochondrial and cytosolic compartments through the ubiquitin-proteasome system. Analogous to defective protein folding in the endoplasmic reticulum, a mitochondrial unfolded protein response may play a role in the apoptotic effects of hsp90 and proteasome inhibitors

    Kavezno izlaganje lubina (Dicentrarchus labrax) u procjeni genotoksičnog utjecaja onečišćenja

    Get PDF
    Genotoxic effects are often the earliest signs of pollution-related environmental disturbance. In this study, we used the comet assay and micronucleus test to assess DNA damage in the erythrocytes of the European sea bass (Dicentrarchus labrax) exposed to environmental pollution in situ. Fish were collected from a fi sh farm in the Trogir Bay and their cages placed at an unpolluted reference site Šolta (Nečujam Bay) and a polluted site Vranjic (Kaštela Bay) for four weeks. A group of fi sh which remained at the fi sh farm Trogir Bay were used as the second control group. Fish exposed at the Vranjic site showed a signifi cantly higher erythrocyte DNA damage, measured by the comet assay, than either control group. Micronucleus induction showed a similar gradient of DNA damage, but did not reach statistical signifi cance. Our results show that cage exposure of a marine fi sh D. labrax can be useful in environmental biomonitoring and confi rm the comet assay as a suitable tool for detecting pollution-related genotoxicity.Genotoksični učinak često je jedan od najranijih pokazatelja štetnog djelovanja onečišćenja okoliša. U ovom radu procijenjeno je oštećenje DNA u eritrocitima lubina (Dicentrarchus labrax) izloženima okolišnom onečišćenju s pomoću komet-testa i mikronukleus-testa. Lubini su prikupljeni na ribogojilištu i kavezno izloženi u periodu od četiri tjedna na dvije postaje različitog stupnja onečišćenja na jadranskoj obali: na kontrolnoj postaji Šolta (zaljev Nečujam) i na onečišćenoj postaji Vranjic (Kaštelanski zaljev). Zasebna skupina lubina skupljena na ribogojilištu poslužila je kao druga kontrola. Rezultati komet-testa pokazali su statistički značajan porast oštećenja DNA na postaji Vranjic u usporedbi s obje kontrolne postaje. Rezultati mikronukleus-testa pokazali su sličan gradijent onečišćenja, iako nisu dosegli statističku značajnost. Ovi rezultati upućuju na primjenjivost kaveznog izlaganja lubina D. labrax u biomonitoringu vodenog okoliša te potvrđuju korisnost komet-testa kao prikladne metode za detekciju genotoksičnog utjecaja onečišćenja

    Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review

    Get PDF

    The effect of polymer molecular weight on the performance of PTB7-Th:O-IDTBR non-fullerene organic solar cells

    No full text
    Recent advances in the development of non-fullerene acceptors have increased the power conversion efficiency of organic solar cells to approximately 13%. Fullerene-derivatives and non-fullerene acceptors possess distinctively different structural, optical and electronic properties, which also change the requirements on the polymer donor in non-fullerene organic solar cells. Therefore, in this study, the effect of the molecular weight of the conjugated polymer on the photovoltaic performance, charge carrier mobility, crystallization properties, film morphology, and non-geminate recombination dynamics is systematically investigated in polymer:small molecule organic solar cells using the low bandgap polymer PTB7-Th as the donor and the non-fullerene indacenodithiophene-based small molecule O-IDTBR as the acceptor. Among the examined polymer samples (50–300 kDa), high molecular weights of PTB7-Th (with an optimum molecular weight of 200 kDa) are advantageous to achieve high efficiencies up to 10%, which can be correlated with an increased crystallinity, an improved field-effect hole mobility (1.05 × 10−2 cm2 V−1 s−1), lower charge carrier trapping and a reduced activation energy of charge transport (98 meV). Bias-assisted charge extraction and transient photovoltage measurements reveal higher carrier concentrations (1016 cm−3) and long lifetimes (4.5 μs) as well as lower non-geminate recombination rate constants in the corresponding devices, supporting the high photocurrents (ca. 15.2 mA cm−2) and fill factors (>60%)
    corecore