10 research outputs found

    Effect of Encapsulation on Antimicrobial Activity of Herbal Extracts with Lysozyme

    Get PDF
    Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin) on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch). Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus) and two Gram-negative (Escherichia coli and Serratia marcescens) bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries

    Accumulation of Poly(3-hydroxybutyrate) Helps Bacterial Cells to Survive Freezing.

    No full text
    Accumulation of polyhydroxybutyrate (PHB) seems to be a common metabolic strategy adopted by many bacteria to cope with cold environments. This work aimed at evaluating and understanding the cryoprotective effect of PHB. At first a monomer of PHB, 3-hydroxybutyrate, was identified as a potent cryoprotectant capable of protecting model enzyme (lipase), yeast (Saccharomyces cerevisiae) and bacterial cells (Cupriavidus necator) against the adverse effects of freezing-thawing cycles. Further, the viability of the frozen-thawed PHB accumulating strain of C. necator was compared to that of the PHB non-accumulating mutant. The presence of PHB granules in cells was revealed to be a significant advantage during freezing. This might be attributed to the higher intracellular level of 3-hydroxybutyrate in PHB accumulating cells (due to the action of parallel PHB synthesis and degradation, the so-called PHB cycle), but the cryoprotective effect of PHB granules seems to be more complex. Since intracellular PHB granules retain highly flexible properties even at extremely low temperatures (observed by cryo-SEM), it can be expected that PHB granules protect cells against injury from extracellular ice. Finally, thermal analysis indicates that PHB-containing cells exhibit a higher rate of transmembrane water transport, which protects cells against the formation of intracellular ice which usually has fatal consequences

    Effect of freezing-thawing treatment on the residual activity of lipase in the absence and presence of 50 mM and 100 mM 3HB.

    No full text
    <p>*note: Statistical significance was tested using 2 sample t-test (Minitab), each sample was compared with control, statistically insignificant results are labeled by red.</p

    Results of dynamic TGA analysis of centrifuged PHB-containing and PHB non-containing cultures of <i>C</i>. <i>necator</i>.

    No full text
    <p>A) Weight loss at a heating rate of 10°C/min in the interval 25–700°C, B) derivative weight loss as a function of residual water content (arrows indicate critical water content).</p

    Analysis of chronic myeloid leukemia during deep molecular response by genomic PCR: a traffic light stratification model with impact on treatment-free remission

    No full text
    This work investigated patient-specific genomic BCR-ABL1 fusions as markers of measurable residual disease (MRD) in chronic myeloid leukaemia, with a focus on relevance to treatment-free remission (TFR) after achievement of deep molecular response (DMR) on tyrosine kinase inhibitor (TKI) therapy. DNA and mRNA BCR-ABL1 measurements by qPCR were compared in 2189 samples (129 patients) and by digital PCR in 1279 sample (62 patients). A high correlation was found at levels of disease above MR4, but there was a poor correlation for samples during DMR. A combination of DNA and RNA MRD measurements resulted in a better prediction of molecular relapse-free survival (MRFS) after TKI stop (n = 17) or scheduled interruption (n = 25). At 18 months after treatment cessation, patients with stopped or interrupted TKI therapy who were DNA negative/RNA negative during DMR maintenance (green group) had an MRFS of 80% and 100%, respectively, compared with those who were DNA positive/RNA negative (MRFS = 57% and 67%, respectively; yellow group) or DNA positive/RNA positive (MRFS = 20% for both cohorts; red group). Thus, we propose a “traffic light” stratification as a TFR predictor based on DNA and mRNA BCR-ABL1 measurements during DMR maintenance before TKI cessation
    corecore