599 research outputs found

    A facile method to oxidize carbon nanotubes in controlled flow of oxygen at 350 °C

    Get PDF
    The functionalization of carbon nanotubes (CNTs) is a very important step in many applications but it is still a very complex and variable task. This work shows an efficient, easily reproducible and optimal method to introduce oxygenated functional groups to CNTs by treating them for 60′ at 350 °C with a mixture of 2% oxygen in argon. The oxidized nanotubes were characterized through FT-IR, Raman and TGA to verify the quality of the oxidation and the lattice integrity of the treated CNTs. The results demonstrate that the treated nanotubes are not damaged even after introducing a significant number of new groups. This methodology could be easily tuned to functionalize other types of graphitic materials

    Fe-periclase reactivity at Earth's lower mantle conditions: Ab-initio geochemical modelling

    Get PDF
    Intrinsic and extrinsic stability of the (Mg,Fe)O solid mixture in the Fe-Mg-Si-O system at high P, T conditions relevant to the Earth\u2019s mantle is investigated by the combination of quantum mechanical calculations (Hartree- 26 Fock/DFT hybrid scheme), cluster expansion techniques and statistical thermodynamics. Iron in the (Mg,Fe)O binary mixture is assumed to be either in the low spin (LS) or in the high spin (HS) state. Un-mixing at solid state is observed only for the LS condition in the 23\u201342 GPa pressure range, whereas HS does not give rise to un-mixing. LS (Mg,Fe)O un-mixings are shown to be able to incorporate iron by subsolidus reactions with a reservoir of a virtual bridgmanite composition, for a maximum total enrichment of 0.22 FeO. At very high P (up to 130/3150 GPa/K), a predominant (0.7 phase proportion), iron-rich Fe-periclase mixture (Mg0.50Fe0.50)O is formed, and it coexists, at constrained phase composition conditions, with two iron-poor assemblages [(Mg0.90Fe0.10)O and (Mg0.825Fe0.175)O]. These theoretical results agree with the compositional variability and frequency of occurrence observed in lower mantle Fe-periclase from diamond inclusions and from HP-HT synthesis products. The density difference among the Fe-periclase phases increases up to 10%, between 24 and 130 GPa. The calculated bulk Fe/Mg partitioning coefficient between the bridgmanite reservoir and Fe-periclase, Kd, is 0.64 at 24 GPa; it then drops to 0.19 at 80 GPa, and becomes quasi-invariant (0.18\u20130.16) in the lowermost portion of the Earth\u2019s mantle (80\u2013 130 GPa). These Kd-values represent an approximate estimate for the Fe/Mg-partitioning between actual bridgmanite and Fe-periclase. Consequently, our Kd-values agree with experimental measurements and theoretical determinations, hinting that iron preferentially dissolves in periclase with respect to all the other iron-bearing phases of the lower mantle. The continuous change up to 80 GPa (2000 km depth) of the products (compositions and phase proportions) over the MgO-FeO binary causes geochemical heterogeneities throughout the lower mantle, but it does not give rise to any sharp discontinuity. In this view, anomalies like the ULVZs, explained with a local and abrupt change of density, do not seem primarily ascribable to the mixing behavior and reactivity of (Mg,Fe)O at subsolidus

    Mechanical properties of mortar containing waste plastic (PVC) as aggregate partial replacement

    Get PDF
    The purpose of this work is the reuse of polyvinyl chloride (PVC) deriving from waste electrical and electronic equipment (WEEE) used as a partial substitute for the mineral aggregate to produce lightened mortars. PVC was recovered from copper electrical cables, ground and used as replacement of mineral aggregate in 5, 10, 15 and 20 % vol. in mortar. A thermal characterization of the starting material was carried out to understand its composition. The mortar samples were mechanically tested both using class G cement and ordinary Portland cement. The results showed a worsening of the mechanical properties of around 50 % for only 5 % in volume of sand substituted with PVC waste. A likely explanation to this phenomenon was found in the mechanical characteristics of the PVC used and to its poor adhesion with the matrix, that resulted in the creation of porosity. However, the mortar prepared contributes to the conservation of natural resources and maintains mechanical properties adequate for the use in non-structural applications (e.g. screed or substrate)

    Polyvinyl butyral-based composites with carbon nanotubes: Efficient dispersion as a key to high mechanical properties

    Get PDF
    Even if the carbon nanotubes (CNTs) and their derivatives are commonly used as reinforcing phase in composite materials, also in commercial products, their tendency to agglomerate generally determines a scarce dispersion, thus not maximizing the effect due to the second phase. In this article, a perfect dispersion of highly entangled nanotubes was achieved by using a very simple approach: exploiting the dispersing effect of a low-cost polymer, polyvinyl butyral (PVB), coupled with standard ultrasound sonication. Several dispersion approaches were tested in order to develop a consistent and widely applicable dispersion protocol. The tape casting technology was subsequently used to produce 100 to 300 μm thick PVB-matrix composite tapes, reinforced by multiwall CNTs dispersed according to the optimized protocol. Their mechanical properties were evaluated, and a simple model was used to demonstrate that the effective dispersion of CNTs is the key to obtain significantly improved properties

    Recycling of WEEE plastics waste in mortar: The effects on mechanical properties

    Get PDF
    This work focused on the recycling of WEEE plastic waste as a partial substitute for aggregate in light mortars. The plastic mix, provided by the IREN group, was used as a replacement of aggregate in 15, 30, 45, 60, 75, and 90%vol in mortars. Worsening of the mechanical performance of around 50% was detected already at only 15%vol of mineral aggregate substituted with plastic waste. The explanation of this phenomenon was found in both the scarce mechanical properties of the used plastic and in the poor adhesion between matrix and plastics that resulted in extra-porosity formation, as also demonstrated by comparing the results with several models in the literature. However, the use of plastic waste as a partial replacement of natural aggregate contributes to the preservation of natural resources and, in any case, does not limit the application of these materials in non-structural applications

    Mechanical properties of mortar containing recycled Acanthocardia tuberculata seashells as aggregate partial replacement

    Get PDF
    Waste management is a most current topic, and as such, numerous articles in literature discuss over the recycling and re-use of waste materials from various fields. A common solution is the to use these materials as partial substituent of the inert fraction in concretes and mortars. This work focuses on the possibility of using Acanthocardia tuberculata seashells, which constitute a food waste destined to landfilling, as partial substituents of inert in mortars. The results obtained evidenced that the reduction in mechanical properties (in terms of toughness and flexural stress) is mainly due to the water absorption properties of seashells aggregates, which affect the hydration of the cement. However, as experimentally demonstrated, such decrease in mechanical properties in any case does not compromise the performance of the material when used for civil applications

    MSWI Fly Ash Multiple Washing: Kinetics of Dissolution in Water, as Function of Time, Temperature and Dilution

    Get PDF
    Municipal solid waste incineration fly ash (FA) can represent a sustainable supply of supplementary material to the construction industries if it is pre-treated to remove hazardous substances such as chloride, sulfate, and heavy metals. In this paper, the phenomenology associated with a water washing multi-cycle treatment of FA is investigated, focusing attention upon the mineral dissolution process. The efficacy of the treatment is assessed by leaching tests, according to the European Standard, and discussed in light of the occurring mineral phases. The water-to-solid (L/S) ratio is a crucial parameter, along with the number of washing cycles, for removing halite and sylvite, whereas quartz, calcite, anhydrite, and an amorphous phase remain in the solid residue. The sequential extraction method and dissolution kinetics modelling provide further elements to interpret leaching processes, and suggest that dissolution takes place through a two-step mechanism. Altogether, multi-step washing with L/S = 5 is effective in reducing contaminants under the legal limits for non-hazardous waste disposal, while the legal limits for non-reactive or reusable material cannot be completely reached, owing to sulfate and some heavy metals which still leached out from the residue

    Associations between Objectively-measured Acoustic Parameters and Occupational Voice Use among Primary School Teachers☆

    Get PDF
    Abstract Previous studies on voice disorders among teachers have reported that this multidimensional phenomenon is associated with individual factors, external factors related with the audience and with the type of task and the occupation. This work deals with the long-term monitoring (1 to 4 days) of 31 primary school teachers and with the determination of the relationship between conversational and occupational voice parameters. Statistical analysis was performed to investigate the relationships between voice parameters and room acoustics-related factors
    • …
    corecore