39 research outputs found

    Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: A key to lean phenotype

    Get PDF
    AbstractWe are facing a revival of the strategy to counteract obesity and associated metabolic disorders by inducing thermogenesis mediated by mitochondrial uncoupling protein-1 (UCP1). Thus, the main focus is on the adaptive non-shivering thermogenesis occurring both in the typical depots of brown adipose tissue (BAT) and in UCP1-containing cells that could be induced in white adipose tissue (WAT). Because contribution of WAT to resting metabolic rate is relatively small, the possibility to reduce adiposity by enhancing energy expenditure in classical white adipocytes is largely neglected. However, several pieces of evidence support a notion that induction of energy expenditure based on oxidation of fatty acids (FA) in WAT may be beneficial for health, namely: (i) studies in both humans and rodents document negative association between oxidative capacity of mitochondria in WAT and obesity; (ii) pharmacological activation of AMPK in rats as well as cold-acclimation of UCP1-ablated mice results in obesity resistance associated with increased oxidative capacity in WAT; and (iii) combined intervention using long-chain n-3 polyunsaturated FA (omega 3) and mild calorie restriction exerted synergism in the prevention of obesity in mice fed a high-fat diet; this was associated with strong hypolipidemic and insulin-sensitizing effects, as well as prevention of inflammation, and synergistic induction of mitochondrial oxidative phosphorylation (OXPHOS) and FA oxidation, specifically in epididymal WAT. Importantly, these changes occurred without induction of UCP1 and suggested the involvement of: (i) futile substrate cycle in white adipocytes, which is based on lipolysis of intracellular triacylglycerols and re-esterification of FA, in association with the induction of mitochondrial OXPHOS capacity, β-oxidation, and energy expenditure; (ii) endogenous lipid mediators (namely endocannabinoids, eicosanoids, prostanoids, resolvins, and protectins) and their cognate receptors; and (iii) AMP-activated protein kinase in WAT. Quantitatively, the strong induction of FA oxidation in WAT in response to the combined intervention is similar to that observed in the transgenic mice rendered resistant to obesity by ectopic expression of UCP1 in WAT. The induction of UCP1-independent FA oxidation and energy expenditure in WAT in response to the above physiological stimuli could underlie the amelioration of obesity and low-grade WAT inflammation, and it could reduce the release of FA from adipose tissue and counteract harmful consequences of lipid accumulation in other tissues. In this respect, new combination treatments may be designed using naturally occurring micronutrients (e.g. omega 3), reduced calorie intake or pharmaceuticals, exerting synergism in the induction of the mitochondrial OXPHOS capacity and stimulation of lipid catabolism in white adipocytes, and improving metabolic flexibility of WAT. The role of mutual interactions between adipocytes and immune cells contained in WAT in tissue metabolism should be better characterised. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease

    Adipose tissue-specific ablation of PGC-1β impairs thermogenesis in brown fat

    Get PDF
    Adrenergic control; Lipid metabolism; MiceControl adrenèrgic; Metabolisme dels lípids; RatolinsControl adrenérgico; Metabolismo de los lípidos; RatonesImpaired thermogenesis observed in mice with whole-body ablation of peroxisome proliferator-activated receptor-γ coactivator-1β (PGC-1β; officially known as PPARGC1B) may result from impaired brown fat (brown adipose tissue; BAT) function, but other mechanism(s) could be involved. Here, using adipose-specific PGC-1β knockout mice (PGC-1β-AT-KO mice) we aimed to learn whether specific PGC-1β ablation in adipocytes is sufficient to drive cold sensitivity. Indeed, we found that warm-adapted (30°C) mutant mice were relatively sensitive to acute cold exposure (6°C). When these mice were subjected to cold exposure for 7 days (7-day-CE), adrenergic stimulation of their metabolism was impaired, despite similar levels of thermogenic uncoupling protein 1 in BAT in PGC-1β-AT-KO and wild-type mice. Gene expression in BAT of mutant mice suggested a compensatory increase in lipid metabolism to counteract the thermogenic defect. Interestingly, a reduced number of contacts between mitochondria and lipid droplets associated with low levels of L-form of optic atrophy 1 was found in BAT of PGC-1β-AT-KO mice. These genotypic differences were observed in warm-adapted mutant mice, but they were partially masked by 7-day-CE. Collectively, our results suggest a role for PGC-1β in controlling BAT lipid metabolism and thermogenesis.The research was supported by the Czech Science Foundation (Grantová Agentura České Republiky; 18-04483S) and by a grant from the Ministerio de Economía y Competitividad, co-funded by the European Regional Development Fund (ERDF) (RTI2018-099250-B-100 to J.A.V.)

    The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice

    Get PDF
    ABSTRACT: BACKGROUND: Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of marine origin exert multiple beneficial effects on health. Our previous study in mice showed that reduction of adiposity by LC n-3 PUFA was associated with both, a shift in adipose tissue metabolism and a decrease in tissue cellularity. The aim of this study was to further characterize the effects of LC n-3 PUFA on fat cell proliferation and differentiation in obese mice. METHODS: A model of inducible and reversible lipoatrophy (aP2-Cre-ERT2 PPARgammaL2/L2 mice) was used, in which the death of mature adipocytes could be achieved by a selective ablation of peroxisome proliferator-activated receptor gamma in response to i.p. injection of tamoxifen. Before the injection, obesity was induced in male mice by 8-week-feeding a corn oil-based high-fat diet (cHF) and, subsequently, mice were randomly assigned (day 0) to one of the following groups: (i) mice injected by corn-oil-vehicle only, i.e."control" mice, and fed cHF; (ii) mice injected by tamoxifen in corn oil, i.e. "mutant" mice, fed cHF; (iii) control mice fed cHF diet with 15% of dietary lipids replaced by LC n-3 PUFA concentrate (cHF+F); and (iv) mutant mice fed cHF+F. Blood and tissue samples were collected at days 14 and 42. RESULTS: Mutant mice achieved a maximum weight loss within 10 days post-injection, followed by a compensatory body weight gain, which was significantly faster in the cHF as compared with the cHF+F mutant mice. Also in control mice, body weight gain was depressed in response to dietary LC n-3 PUFA. At day 42, body weights in all groups stabilized, with no significant differences in adipocyte size between the groups, although body weight and adiposity was lower in the cHF+F as compared with the cHF mice, with a stronger effect in the mutant than in control mice. Gene expression analysis documented depression of adipocyte maturation during the reconstitution of adipose tissue in the cHF+F mutant mice. CONCLUSION: Dietary LC n-3 PUFA could reduce both hypertrophy and hyperplasia of fat cells in vivo. Results are in agreement with the involvement of fat cell turnover in control of adiposity

    Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet

    Get PDF
    Background. Dietary polyunsaturated fatty acids (PUFA), in particular the long chain marine fatty acids docosahexaenoic (DHA) and eicosapentaenoic (EPA), are linked to many health benefits in humans and in animal models. Little is known of the molecular response to DHA and EPA of the small intestine, and the potential contribution of this organ to the beneficial effects of these fatty acids. Here, we assessed gene expression changes induced by DHA and EPA in the wildtype C57BL/6J murine small intestine using whole genome microarrays and functionally characterized the most prominent biological process. Results. The main biological process affected based on gene expression analysis was lipid metabolism. Fatty acid uptake, peroxisomal and mitochondrial beta-oxidation, and omega-oxidation of fatty acids were all increased. Quantitative real time PCR, and -in a second animal experiment- intestinal fatty acid oxidation measurements confirmed significant gene expression differences and showed in a dose-dependent manner significant changes at biological functional level. Furthermore, no major changes in the expression of lipid metabolism genes were observed in the colon. Conclusion. We show that marine n-3 fatty acids regulate small intestinal gene expression and increase fatty acid oxidation. Since this organ contributes significantly to whole organism energy use, this effect on the small intestine may well contribute to the beneficial physiological effects of marine PUFAs under conditions that will normally lead to development of obesity, insulin resistance and diabete

    Unmasking Differential Effects of Rosiglitazone and Pioglitazone in the Combination Treatment with n-3 Fatty Acids in Mice Fed a High-Fat Diet

    Get PDF
    Combining pharmacological treatments and life style interventions is necessary for effective therapy of major diseases associated with obesity, which are clustered in the metabolic syndrome. Acting via multiple mechanisms, combination treatments may reduce dose requirements and, therefore, lower the risk of adverse side effects, which are usually associated with long-term pharmacological interventions. Our previous study in mice fed high-fat diet indicated additivity in preservation of insulin sensitivity and in amelioration of major metabolic syndrome phenotypes by the combination treatment using n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and rosiglitazone, i.e. an anti-diabetic drug of the thiazolidinedione (TZD) family. We investigated here whether pioglitazone, a TZD-drug in clinical use, could elicit the additive beneficial effects when combined with n-3 LC-PUFA. Adult male mice (C57BL/6N) were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various dietary treatments (i) cHF+F, cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids; (ii) cHF+ROSI, cHF with 10 mg rosiglitazone/kg diet; (iii) cHF+F+ROSI; (iv) cHF+PIO, cHF with 50 mg pioglitazone/kg diet; and (v) cHF+F+PIO, or chow-fed. Plasma concentrations of 163 metabolites were evaluated using a targeted metabolomics approach. Both TZDs preserved glucose homeostasis and normal plasma lipid levels while inducing adiponectin, with pioglitazone showing better effectiveness. The beneficial effects of TZDs were further augmented by the combination treatments. cHF+F+ROSI but not cHF+F+PIO counteracted development of obesity, in correlation with inducibility of fatty acid β-oxidation, as revealed by the metabolomic analysis. By contrast, only cHF+F+PIO eliminated hepatic steatosis and this treatment also reversed insulin resistance in dietary obese mice. Our results reveal differential effects of rosiglitazone and pioglitazone, unmasked in the combination treatment with n-3 LC-PUFA, and support the notion that n-3 LC-PUFA could be used as add-on treatment to TZDs in order to improve diabetic patient's therapy

    Muscle Involvement in Preservation of Metabolic Flexibility by Treatment using n-3 PUFA or Rosiglitazone in Dietary-Obese Mice

    No full text
    Impaired resistance to insulin, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. The hampered metabolic adaptability triggers a further damage of insulin signaling. Since skeletal muscle is the main site of glucose uptake, effectiveness of T2D treatment depends in large on the improvement of insulin sensitivity and metabolic adaptability of the muscle. We have shown previously in mice fed an obesogenic high-fat diet that a combination treatment using n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and thiazolidinedione (TZD) anti-diabetic drugs preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether TZD rosiglitazone could elicit the additive beneficial effects on metabolic flexibility when combined with n-3 LC-PUFA. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various dietary treatments: (i) cHF+F, cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids; (ii) cHF+ROSI, cHF with 10 mg rosiglitazone/kg diet; and (iii) cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combination treatment. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the single treatments, with rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism, and n-3 LC PUFA supporting complete oxidation of fatty acids in mitochondria. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combination treatment using n-3 LC-PUFA and TZDs could improve the efficacy of the treatment of obese and diabetic patients

    Muscle Involvement in Preservation of Metabolic Flexibility by Treatment using n-3 PUFA or Rosiglitazone in Dietary-Obese Mice

    No full text
    Impaired resistance to insulin, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. The hampered metabolic adaptability triggers a further damage of insulin signaling. Since skeletal muscle is the main site of glucose uptake, effectiveness of T2D treatment depends in large on the improvement of insulin sensitivity and metabolic adaptability of the muscle. We have shown previously in mice fed an obesogenic high-fat diet that a combination treatment using n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and thiazolidinedione (TZD) anti-diabetic drugs preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether TZD rosiglitazone could elicit the additive beneficial effects on metabolic flexibility when combined with n-3 LC-PUFA. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various dietary treatments: (i) cHF+F, cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids; (ii) cHF+ROSI, cHF with 10 mg rosiglitazone/kg diet; and (iii) cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combination treatment. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the single treatments, with rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism, and n-3 LC PUFA supporting complete oxidation of fatty acids in mitochondria. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combination treatment using n-3 LC-PUFA and TZDs could improve the efficacy of the treatment of obese and diabetic patients

    Muscle Involvement in Preservation of Metabolic Flexibility by Treatment using n-3 PUFA or Rosiglitazone in Dietary-Obese Mice

    No full text
    Impaired resistance to insulin, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. The hampered metabolic adaptability triggers a further damage of insulin signaling. Since skeletal muscle is the main site of glucose uptake, effectiveness of T2D treatment depends in large on the improvement of insulin sensitivity and metabolic adaptability of the muscle. We have shown previously in mice fed an obesogenic high-fat diet that a combination treatment using n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) and thiazolidinedione (TZD) anti-diabetic drugs preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether TZD rosiglitazone could elicit the additive beneficial effects on metabolic flexibility when combined with n-3 LC-PUFA. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF) for 8 weeks, or randomly assigned to various dietary treatments: (i) cHF+F, cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids; (ii) cHF+ROSI, cHF with 10 mg rosiglitazone/kg diet; and (iii) cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combination treatment. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the single treatments, with rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism, and n-3 LC PUFA supporting complete oxidation of fatty acids in mitochondria. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combination treatment using n-3 LC-PUFA and TZDs could improve the efficacy of the treatment of obese and diabetic patients

    Focal Adhesion Protein Vinculin Is Required for Proper Meiotic Progression during Mouse Spermatogenesis

    No full text
    The focal adhesion protein Vinculin (VCL) is ascribed to various cytoplasmic functions; however, its nuclear role has so far been ambiguous. We observed that VCL localizes to the nuclei of mouse primary spermatocytes undergoing first meiotic division. Specifically, VCL localizes along the meiosis-specific structure synaptonemal complex (SC) during prophase I and the centromeric regions, where it remains until metaphase I. To study the role of VCL in meiotic division, we prepared a conditional knock-out mouse (VCLcKO). We found that the VCLcKO male mice were semi-fertile, with a decreased number of offspring compared to wild-type animals. This study of events in late prophase I indicated premature splitting of homologous chromosomes, accompanied by an untimely loss of SCP1. This caused erroneous kinetochore formation, followed by failure of the meiotic spindle assembly and metaphase I arrest. To assess the mechanism of VCL involvement in meiosis, we searched for its possible interacting partners. A mass spectrometry approach identified several putative interactors which belong to the ubiquitin–proteasome pathway (UPS). The depletion of VLC leads to the dysregulation of a key subunit of the proteasome complex in the meiotic nuclei and an altered nuclear SUMOylation level. Taken together, we show for the first time the presence of VCL in the nucleus of spermatocytes and its involvement in proper meiotic progress. It also suggests the direction for future studies regarding the role of VCL in spermatogenesis through regulation of UPS
    corecore