8 research outputs found

    Developing and Using Empirical Bio-Optical Algorithms in the Western Part of the Bering Sea in the Late Summer Season

    No full text
    This study aimed to assess the applicability of global bio-optical algorithms for the estimation of chlorophyll-a (chl-a) concentration (C) and develop regional empirical bio-optical algorithms for estimating C and colored dissolved organic matter (CDOM) content (D) from ocean remote sensing reflectance spectra in the western part of the Bering Sea in the late summer period. The analysis took into account possible problems with the different relative contributions of phytoplankton and CDOM to water-leaving radiance and possible errors associated with the atmosphere correction procedure for ocean color satellite data. Shipborne remote sensing measurements obtained using an above-water hyperspectral ASD HandHeld spectroradiometer, satellite measurements collected via MODIS and VIIRS radiometers, and in situ measurements of C and D in seawater were used. The simulated values of the different multispectral satellite radiometers with daily or 2-day global coverage, obtained by applying the corresponding spectral response functions to ship hyperspectral data, were also analyzed. In this paper, a list of recommended regional bio-optical algorithms is presented. Recommendations are given depending on the possible quality of atmospheric correction and the purpose of use. To obtain more precise estimations of C, OC3/OC4-like algorithms should be used. If the atmosphere correction is poor, then use OC2-like algorithms in which spectral bands in the 476–539 nm range should be used to estimate C and bands near 443 nm to estimate D; however, in the last case, this will provide only the order of magnitude. To estimate more independent fields of C and D, it is necessary to use a spectral range of 501–539 nm for chl-a and bands near 412 nm in the case of modern satellite radiometers (e.g., OLCI or SGLI), for which this band is not the first. Additionally, we showed that global bio-optical algorithms can be applied with acceptable accuracy and similar recommendations

    Distribution and Demography of Antarctic Krill and Salps in the Atlantic Sector of the Southern Ocean during Austral Summer 2021–2022

    No full text
    The study aimed to investigate krill (Euphausia superba) and salp (Salpa thompsoni) populations in the Atlantic sector of the Southern Ocean in January and February 2022. Samples were obtained to measure the abundance, biomass and distribution patterns of krill and salp. Sex differences and feeding habits of the Antarctic krill were determined. The dependence of the physiological state of the studied aquatic organisms on changes in environmental parameters was analyzed. Current data on the association of the dynamics of hydrometeorological parameters and processes with the distribution of chlorophyll a, krill, and salp were obtained. It was established that, at numerous stations, the biomass of salps prevailed over krill. The result indicates the replacement of the Antarctic krill populations by gelatinous zooplankton. The obtained results allow assessment of the biological resource potential in the studied region based on the analysis of the samples collected

    Physical and Biological Features of the Waters in the Outer Patagonian Shelf and the Malvinas Current

    No full text
    The aim of this study is to trace how the fine-thermohaline and kinematic structure, formed over a section along 45.8° S in the interaction zone of the outer Patagonian Shelf (PS) and Malvinas (Falkland) Current (MC) System waters, affect the spatial distribution of bio-optical characteristics, phyto/zooplankton, birds, and marine mammals. For the first time, simultaneous multidisciplinary observations at high spatial resolution (~2.5 km) were performed in this region during the cruise of the R/V “Akademic Mstislav Keldysh” in February 2022. A fine structure of alternating upwelling and downwelling zones over the PS and slope was identified, which resulted from the interaction between the MC inshore branch (MCi), bottom topography, and wind. This interaction significantly affects all the physical, and optical characteristics analyzed in the work, as well as the biota of the region. It was found that the euphotic zone is larger in the downwelling zones than in the upwelling zones, and all spatially local maxima of phytoplankton photosynthetic efficiency are observed in the zones between upwelling and downwelling. Phytoplankton along the section were represented by 43 species. A total of 30 zooplankton species/taxa were identified. Three species of marine mammals and 11 species of birds were recorded in the study site. Most of the phytoplankton species list were formed by dinoflagellates, and picoplankton Prasinoderma colonial quantitatively dominated everywhere. Two floristic and three assemblage groups were distinguished among the analyzed phytoplankton communities. High phytoplankton biodiversity was observed above the PS and low above the PS edge and in the MCi core. Copepods mostly dominated in zooplankton. Subantarctic species/taxa of zooplankton concentrated in the nearshore waters of the PS, while Antarctic species/taxa were most abundant in the zone between the MCi and the MC offshore branch (MCo). The relative abundance of birds in the PS was several times higher than in the MCo. The minimum abundance of birds was in the MCi in the zone of the strongest upwelling identified above the PS edge

    Water Exchange between Deep Basins of the Bransfield Strait

    No full text
    The Bransfield Strait is a relatively deep and narrow channel between the South Shetland Islands and the Antarctic Peninsula contributing to the water transport between the Pacific and Atlantic sectors of the Southern Ocean. The strait can be divided into three deep separate basins, namely, the western, central, and eastern basins. The sources of deep waters in the three basins are different, leading to differences in thermohaline properties and water density between the basins. The difference in water density should in turn cause intense deep currents from one basin to another through narrow passages over the sills separating the basins. However, there are still no works dedicated to such possible overflows in the Bransfield Strait. In this study, we report our new CTD and LADCP measurements performed in 2022 over the watersheds between the basins. Quasisimultaneous observations of the main circulation patterns carried out at several sections allowed us to analyze the evolution of thermohaline and kinematic structures along the Bransfield Strait. Volume transports of waters in the strait were estimated on the basis of direct velocity observations. These new data also indicate the existence of intense and variable deep current between the central and eastern basins of the strait. The analysis of historical data shows that the mean flow is directed from the central to the eastern basin. In addition, LADCP data suggest the intensification of the flow in the narrow part of the sill between the basins, and the possible mixing of deep waters at this location

    Water Exchange between Deep Basins of the Bransfield Strait

    No full text
    The Bransfield Strait is a relatively deep and narrow channel between the South Shetland Islands and the Antarctic Peninsula contributing to the water transport between the Pacific and Atlantic sectors of the Southern Ocean. The strait can be divided into three deep separate basins, namely, the western, central, and eastern basins. The sources of deep waters in the three basins are different, leading to differences in thermohaline properties and water density between the basins. The difference in water density should in turn cause intense deep currents from one basin to another through narrow passages over the sills separating the basins. However, there are still no works dedicated to such possible overflows in the Bransfield Strait. In this study, we report our new CTD and LADCP measurements performed in 2022 over the watersheds between the basins. Quasisimultaneous observations of the main circulation patterns carried out at several sections allowed us to analyze the evolution of thermohaline and kinematic structures along the Bransfield Strait. Volume transports of waters in the strait were estimated on the basis of direct velocity observations. These new data also indicate the existence of intense and variable deep current between the central and eastern basins of the strait. The analysis of historical data shows that the mean flow is directed from the central to the eastern basin. In addition, LADCP data suggest the intensification of the flow in the narrow part of the sill between the basins, and the possible mixing of deep waters at this location

    Multidisciplinary Observations across an Eddy Dipole in the Interaction Zone between Subtropical and Subantarctic Waters in the Southwest Atlantic

    No full text
    Seawater properties in two intense rings in the South Atlantic are considered. One ring separated from the Brazil Current and the other from the Malvinas Current. The analysis is based on the CTD casts and SADCP measurements from the onboard velocity profiler. The optical properties, chemical parameters, methane concentration, and biological properties such as primary production, plankton, and fish were also analyzed. Analysis of strong differences between the eddies is supplemented by observations of whales and birds in the region

    Multidisciplinary Observations across an Eddy Dipole in the Interaction Zone between Subtropical and Subantarctic Waters in the Southwest Atlantic

    No full text
    Seawater properties in two intense rings in the South Atlantic are considered. One ring separated from the Brazil Current and the other from the Malvinas Current. The analysis is based on the CTD casts and SADCP measurements from the onboard velocity profiler. The optical properties, chemical parameters, methane concentration, and biological properties such as primary production, plankton, and fish were also analyzed. Analysis of strong differences between the eddies is supplemented by observations of whales and birds in the region
    corecore