6 research outputs found

    Dynamic functional connectivity in migraine during the interictal phase: a resting-state fMRI study

    Get PDF
    Question: Migraine is a cyclic and complex disorder, characterized by attacks of headache, sensory and cognitive disturbances1. Thalamocortical connectivity in migraine has been found to be transiently abnormal2. Our aim was to assess if the dynamical properties of the migraine brain are affected during the interictal phase. Methods: Resting-state functional MRI data was collected from 14 menstrual migraine patients without aura (interictal phase) and 12 healthy controls (menstrual post-ovulation phase). fMRI data processing included3: motion and distortion correction, temporal highpass filter, regression of motion and physiological confounds, spatial smoothing, and parcellation with the Desikan atlas. Dynamic functional connectivity (dFC) between regions was computed using phase coherence, and recurrent dFC states were identified by kmeans clustering (k ranging between 3 and 15) of the leading eigenvectors of dFC in each time point4. Permutation tests were performed to evaluate statistically significant differences between patients and controls in the probability of occurrence and the mean lifetime of the dFC states. Results: Similar dFC states were found consistently across different numbers of clusters, k, which resembled the canonical resting-state networks as expected. Compared to healthy controls, migraine patients show a significantly lower mean lifetime in one dFC state, when grouping in 4, 5 and 6 clusters. No differences were found for the probability of occurrence. Conclusions: Migraine may be linked to a disruption of brain networks dynamics. This emphasizes the need to adopt time-resolved methods, in addition to static, to study functional connectivity, to better understand the mechanisms of migraine. Our next step will be to assess the dynamics of the migraine brain throughout the migraine cycle.info:eu-repo/semantics/publishedVersio

    NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics

    No full text
    Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data
    corecore