1,070 research outputs found

    Multiorbital effects on the transport and the superconducting fluctuations in LiFeAs

    Full text link
    The resistivity, Hall effect and transverse magnetoresistance (MR) have been measured in low residual resistivity single crystals of LiFeAs. A comparison with angle resolved photoemission spectroscopy and quantum oscillation data implies that four carrier bands unevenly contribute to the transport. However the scattering rates of the carriers all display the T^2 behavior expected for a Fermi liquid. Near Tc low field deviations of the MR with respect to a H^2 variation permit us to extract the superconducting fluctuation contribution to the conductivity. Though below Tc the anisotropy of superconductivity is rather small, the superconducting fluctuations display a quasi ideal two-dimensional behavior which persists up to 1.4 Tc. These results call for a refined theoretical understanding of the multiband behavior of superconductivity in this pnictide.Comment: 8pages with supplementary material, 6 figure

    Proximity effect in Nb-Mo layered films: Transition temperature and critical current dependence on period

    Full text link
    The behavior of the transition temperature and critical current density for a Mo/Nb repeated bilayer system as a function of the number of periods was explored. The measured values of the transition temperature are compared to the theoretical predictions for the proximity effect in the dirty limit. We find that the transition temperature does not decrease as the number of periods increase. In addition, inductive critical current density measurements also show a scaling that indicates the superconductivity properties are not dependent on the number of bilayers.Comment: 13 pages, 6 figures, to be published Journal of Applied Physic

    Nonlocal transport near the charge neutrality point in a two-dimensional electron-hole system

    Full text link
    Nonlocal resistance is studied in a two-dimensional system with a simultaneous presence of electrons and holes in a 20 nm HgTe quantum well. A large nonlocal electric response is found near the charge neutrality point (CNP) in the presence of a perpendicular magnetic field. We attribute the observed nonlocality to the edge state transport via counter propagating chiral modes similar to the quantum spin Hall effect at zero magnetic field and graphene near Landau filling factor ν=0\nu=0Comment: 5 pages, 4 figure

    Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts.

    Get PDF
    The failure of MCF7 cells to induce the formation of tumours after sub-cutaneous inoculation into athymic nude mice can be obviated by the simultaneous injection of an extract of basement membrane proteins (matrigel). Tumour growth is promoted and the latency period is low (2 to 4 weeks). In the absence of matrigel, the simultaneous inoculation of fibroblasts and MCF7 cells also resulted in the development of tumours, but with a longer latency period (about 2 months). The tumorigenic synergy between matrigel and fibroblasts was evidenced by co-inoculating MCF7 cells MDA-MB 231 cells with fibroblasts and matrigel. This co-inoculation decreased the delay of appearance of the tumours and/or accelerated the tumour growth, depending upon the number of fibroblasts injected. Repeated injections of fibroblasts conditioned medium, at the site of inoculum of tumour cells also enhanced tumour growth, suggesting the involvement of soluble factors secreted by fibroblasts. Histologically, tumours induced by co-inoculation of tumour cells and fibroblasts contained more stromal structures including vimentin-positive cells, fibronectin and interstitial collagens. These data suggest that human tumours may be reconstituted and grown in athymic nude mice using basement membrane components and fibroblasts as inductors

    Resistivity of dilute 2D electrons in an undoped GaAs heterostructure

    Get PDF
    We report resistivity measurements from 0.03 K to 10 K in a dilute high mobility 2D electron system. Using an undoped GaAs/AlGaAs heterojunction in a gated field-effect transistor geometry, a wide range of densities, 0.16×1010cm20.16 \times 10^{10} {cm}^{-2} to 7.5×1010cm27.5 \times 10^{10} {cm}^{-2}, are explored. For high densities, the results are quantitatively shown to be due to scattering by acoustic phonons and impurities. In an intermediate range of densities, a peak in the resistivity is observed for temperatures below 1 K. This non-monotonic resistivity can be understood by considering the known scattering mechanisms of phonons, bulk and interface ionized impurities. Still lower densities appear insulating to the lowest temperature measured.Comment: 4 pages, 4 figure

    Technique for producing highly planar Si/SiO0.64Ge0.36/Si metal–oxide–semiconductor field effect transistor channels

    Get PDF
    Si/Si0.64Ge0.36/Si heterostructures have been grown at low temperature (450 °C) to avoid the strain-induced roughening observed for growth temperatures of 550 °C and above. The electrical properties of these structures are poor, and thought to be associated with grown-in point defects as indicated in positron annihilation spectroscopy. However, after an in situ annealing procedure (800 °C for 30 min) the electrical properties dramatically improve, giving an optimum 4 K mobility of 2500 cm2 V – 1 s – 1 for a sheet density of 6.2 × 1011 cm – 2. The low temperature growth yields highly planar interfaces, which are maintained after anneal as evidenced from transmission electron microscopy. This and secondary ion mass spectroscopy measurements demonstrate that the metastably strained alloy layer can endure the in situ anneal procedure necessary for enhanced electrical properties. Further studies have shown that the layers can also withstand a 120 min thermal oxidation at 800 °C, commensurate with metal–oxide–semiconductor device fabrication

    c-axis magnetotransport in CeCoIn5_{5}

    Full text link
    We present the results of out-of-plane electrical transport measurements on the heavy fermion superconductor CeCoIn5_{5} at temperatures from 40 mK to 400 K and in magnetic field up to 9 T. For T<T < 10 K transport measurements show that the zero-field resistivity ρc\rho_{c} changes linearly with temperature and extrapolates nearly to zero at 0 K, indicative of non-Fermi-liquid (nFL) behavior associated with a quantum critical point (QCP). The longitudinal magnetoresistance (LMR) of CeCoIn5_{5} for fields applied parallel to the c-axis is negative and scales as B/(T+T)B/(T+T^{*}) between 50 and 100 K, revealing the presence of a single-impurity Kondo energy scale T2T^{*} \sim 2 K. Beginning at 16 K a small positive LMR feature is evident for fields less than 3 tesla that grows in magnitude with decreasing temperature. For higher fields the LMR is negative and increases in magnitude with decreasing temperature. This sizable negative magnetoresistance scales as B2/TB{^2}/T from 2.6 K to roughly 8 K, and it arises from an extrapolated residual resistivity that becomes negative and grows quadratically with field in the nFL temperature regime. Applying a magnetic field along the c-axis with B >> Bc2_{c2} restores Fermi-liquid behavior in ρc(T)\rho_{c}(T) at TT less than 130 mK. Analysis of the T2T{^2} resistivity coefficient's field-dependence suggests that the QCP in CeCoIn5_{5} is located \emph{below} the upper critical field, inside the superconducting phase. These data indicate that while high-TT c-axis transport of CeCoIn5_{5} exhibits features typical for a heavy fermion system, low-TT transport is governed both by spin fluctuations associated with the QCP and Kondo interactions that are influenced by the underlying complex electronic structure intrinsic to the anisotropic CeCoIn5_{5} crystal structure

    Invasive pulmonary aspergillosis 10 years post bone marrow transplantation: a case report

    Get PDF
    Abstract Introduction Invasive pulmonary aspergillosis is a leading cause of mortality and morbidity in bone marrow transplant recipients. Establishing the diagnosis remains a challenge for clinicians working in acute care setting. However, prompt diagnosis and treatment can lead to favourable outcomes Case presentation We report a case of invasive aspergillosis occurring in a 39-year-old Caucasian female 10 years after an allogeneic haematopoietic bone marrow transplant, and 5 years after stopping all immunosuppression. Possible risk factors include bronchiolitis obliterans and exposure to building dust (for example, handling her husband's dusty overalls). There are no similar case reports in the literature at this time. Conclusion High clinical suspicion, especially in the setting of failure to respond to broad-spectrum antibiotics, should alert clinicians to the possibility of invasive pulmonary aspergillosis, which, in this case, responded to antifungal therapy.</p

    Proton acceleration by irradiation of isolated spheres with an intense laser pulse

    Get PDF
    We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3 x 10(20) W cm(-2). With a laser focal spot size of 10 mu m full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 mu m. Maximum proton energies of similar to 25 MeV are achieved for targets matching the focal spot size of 10 mu m in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.DFG via the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP) Transregio SFB TR18NNSA DE-NA0002008Super-MUC pr48meIvo CermakCGC Instruments in design and realization of the Paul trap systemIMPRS-APSLMUexcellent Junior Research FundDAAD|ToIFEEuropean Union's Horizon research and innovation programme 633053Physic
    corecore