81 research outputs found

    Opsoclonus in a child with neuroborreliosis: Case report and review of the literature

    Get PDF
    Opsoclonus consists of massive erratic rapid eye jerks. They may occur in isolation or in association with myoclonus and ataxia, i.e., opsoclonus-myoclonus syndrome (OMS). We report the case of a 9-year-old girl who suffered from headaches for several days and was shown to have opsoclonus and left peripheral facial palsy. Work-up excluded the diagnosis of neuroblastoma, but CSF analysis showed aseptic meningitis, and serology for Borrelia burgdorferi (Lyme) was positive. The outcome was favorable with complete regression of symptoms after treatment with ceftriaxone 2g/day for 3 weeks. Although rare, the diagnosis of Lyme neuroborreliosis must be raised in the presence of isolated opsoclonus, particularly if the clinical picture is incomplete and if other features, such as peripheral facial palsy and pleocytosis in the CSF, are present

    Inhibition of SOC/Ca2+/NFAT pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sildenafil, a potent phosphodiesterase type 5 (PDE5) inhibitor, has been proposed as a treatment for pulmonary arterial hypertension (PAH). The mechanism of its anti-proliferative effect on pulmonary artery smooth muscle cells (PASMC) is unclear. Nuclear translocation of nuclear factor of activated T-cells (NFAT) is thought to be involved in PASMC proliferation and PAH. Increase in cytosolic free [Ca<sup>2+</sup>] ([Ca<sup>2+</sup>]<sub>i</sub>) is a prerequisite for NFAT nuclear translocation. Elevated [Ca<sup>2+</sup>]<sub>i </sub>in PASMC of PAH patients has been demonstrated through up-regulation of store-operated Ca<sup>2+ </sup>channels (SOC) which is encoded by the transient receptor potential (TRP) channel protein. Thus we investigated if: 1) up-regulation of TRPC1 channel expression which induces enhancement of SOC-mediated Ca<sup>2+ </sup>influx and increase in [Ca<sup>2+</sup>]<sub>i </sub>is involved in hypoxia-induced PASMC proliferation; 2) hypoxia-induced promotion of [Ca<sup>2+</sup>]<sub>i </sub>leads to nuclear translocation of NFAT and regulates PASMC proliferation and TRPC1 expression; 3) the anti-proliferative effect of sildenafil is mediated by inhibition of this SOC/Ca<sup>2+</sup>/NFAT pathway.</p> <p>Methods</p> <p>Human PASMC were cultured under hypoxia (3% O<sub>2</sub>) with or without sildenafil treatment for 72 h. Cell number and cell viability were determined with a hemocytometer and MTT assay respectively. [Ca<sup>2+</sup>]<sub>i </sub>was measured with a dynamic digital Ca<sup>2+ </sup>imaging system by loading PASMC with fura 2-AM. TRPC1 mRNA and protein level were detected by RT-PCR and Western blotting respectively. Nuclear translocation of NFAT was determined by immunofluoresence microscopy.</p> <p>Results</p> <p>Hypoxia induced PASMC proliferation with increases in basal [Ca<sup>2+</sup>]<sub>i </sub>and Ca<sup>2+ </sup>entry via SOC (SOCE). These were accompanied by up-regulation of TRPC1 gene and protein expression in PASMC. NFAT nuclear translocation was significantly enhanced by hypoxia, which was dependent on SOCE and sensitive to SOC inhibitor SKF96365 (SKF), as well as cGMP analogue, 8-brom-cGMP. Hypoxia-induced PASMC proliferation and TRPC1 up-regulation were inhibited by SKF and NFAT blocker (VIVIT and Cyclosporin A). Sildenafil treatment ameliorated hypoxia-induced PASMC proliferation and attenuated hypoxia-induced enhancement of basal [Ca<sup>2+</sup>]<sub>i</sub>, SOCE, up-regulation of TRPC1 expression, and NFAT nuclear translocation.</p> <p>Conclusion</p> <p>The SOC/Ca<sup>2+</sup>/NFAT pathway is, at least in part, a downstream mediator for the anti-proliferative effect of sildenafil, and may have therapeutic potential for PAH treatment.</p

    Phosphodiesterase type 4 expression and anti-proliferative effects in human pulmonary artery smooth muscle cells

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension is a proliferative vascular disease, characterized by aberrant regulation of smooth muscle cell proliferation and apoptosis in distal pulmonary arteries. Prostacyclin (PGI(2)) analogues have anti-proliferative effects on distal human pulmonary artery smooth muscle cells (PASMCs), which are dependent on intracellular cAMP stimulation. We therefore sought to investigate the involvement of the main cAMP-specific enzymes, phosphodiesterase type 4 (PDE4), responsible for cAMP hydrolysis. METHODS: Distal human PASMCs were derived from pulmonary arteries by explant culture (n = 14, passage 3–12). Responses to platelet-derived growth factor-BB (5–10 ng/ml), serum, PGI(2 )analogues (cicaprost, iloprost) and PDE4 inhibitors (roflumilast, rolipram, cilomilast) were determined by measuring cAMP phosphodiesterase activity, intracellular cAMP levels, DNA synthesis, apoptosis (as measured by DNA fragmentation and nuclear condensation) and matrix metalloproteinase-2 and -9 (MMP-2, MMP-9) production. RESULTS: Expression of all four PDE4A-D genes was detected in PASMC isolates. PDE4 contributed to the main proportion (35.9 ± 2.3%, n = 5) of cAMP-specific hydrolytic activity demonstrated in PASMCs, compared to PDE3 (21.5 ± 2.5%), PDE2 (15.8 ± 3.4%) or PDE1 activity (14.5 ± 4.2%). Intracellular cAMP levels were increased by PGI(2 )analogues and further elevated in cells co-treated with roflumilast, rolipram and cilomilast. DNA synthesis was attenuated by 1 μM roflumilast (49 ± 6% inhibition), rolipram (37 ± 6%) and cilomilast (30 ± 4%) and, in the presence of 5 nM cicaprost, these compounds exhibited EC(50 )values of 4.4 (2.6–6.1) nM (Mean and 95% confidence interval), 59 (36–83) nM and 97 (66–130) nM respectively. Roflumilast attenuated cell proliferation and gelatinase (MMP-2 and MMP-9) production and promoted the anti-proliferative effects of PGI(2 )analogues. The cAMP activators iloprost and forskolin also induced apoptosis, whereas roflumilast had no significant effect. CONCLUSION: PDE4 enzymes are expressed in distal human PASMCs and the effects of cAMP-stimulating agents on DNA synthesis, proliferation and MMP production is dependent, at least in part, on PDE4 activity. PDE4 inhibition may provide greater control of cAMP-mediated anti-proliferative effects in human PASMCs and therefore could prove useful as an additional therapy for pulmonary arterial hypertension
    • …
    corecore