5 research outputs found

    Smoothed Embeddings for Certified Few-Shot Learning

    Full text link
    Randomized smoothing is considered to be the state-of-the-art provable defense against adversarial perturbations. However, it heavily exploits the fact that classifiers map input objects to class probabilities and do not focus on the ones that learn a metric space in which classification is performed by computing distances to embeddings of classes prototypes. In this work, we extend randomized smoothing to few-shot learning models that map inputs to normalized embeddings. We provide analysis of Lipschitz continuity of such models and derive robustness certificate against â„“2\ell_2-bounded perturbations that may be useful in few-shot learning scenarios. Our theoretical results are confirmed by experiments on different datasets

    Real-world adversarial attack on MTCNN face detection system

    Full text link
    Recent studies proved that deep learning approaches achieve remarkable results on face detection task. On the other hand, the advances gave rise to a new problem associated with the security of the deep convolutional neural network models unveiling potential risks of DCNNs based applications. Even minor input changes in the digital domain can result in the network being fooled. It was shown then that some deep learning-based face detectors are prone to adversarial attacks not only in a digital domain but also in the real world. In the paper, we investigate the security of the well-known cascade CNN face detection system - MTCNN and introduce an easily reproducible and a robust way to attack it. We propose different face attributes printed on an ordinary white and black printer and attached either to the medical face mask or to the face directly. Our approach is capable of breaking the MTCNN detector in a real-world scenario

    CC-CERT: A Probabilistic Approach to Certify General Robustness of Neural Networks

    No full text
    In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks --- small modifications of the input that change the predictions. Besides rigorously studied â„“p\ell_p-bounded additive perturbations, semantic perturbations (e.g. rotation, translation) raise a serious concern on deploying ML systems in real-world. Therefore, it is important to provide provable guarantees for deep learning models against semantically meaningful input transformations. In this paper, we propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds that can be used in general attack settings. We estimate the probability of a model to fail if the attack is sampled from a certain distribution. Our theoretical findings are supported by experimental results on different datasets
    corecore