3 research outputs found

    Epigenetic clock as a correlate of anxiety

    Get PDF
    DNA methylation changes consistently throughout life and age-dependent alterations in DNA methylation can be used to estimate one’s epigenetic age. Post-mortem studies revealed higher epigenetic age in brains of patients with major depressive disorder, as compared with controls. Since MDD is highly correlated with anxiety, we hypothesized that symptoms of anxiety, as well as lower volume of grey matter (GM) in depression-related cortical regions, will be associated with faster epigenetic clock in a community-based sample of young adults. Participants included 88 young adults (53% men; 23–24 years of age) from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) who participated in its neuroimaging follow-up and provided saliva samples for epigenetic analysis. Epigenetic age was calculated according to Horvath (Horvath, 2013). Women had slower epigenetic clock than men (Cohen’s d = 0.48). In women (but not men), slower epigenetic clock was associated with less symptoms of anxiety. In the brain, women (but not men) with slower epigenetic clock had greater GM volume in the cerebral cortex (brain size-corrected; R2 = 0.07). Lobe-specific analyses showed that in women (but not men), slower epigenetic clock was associated with greater GM volume in frontal lobe (R2 = 0.16), and that GM volume in frontal lobe mediated the relationship between the speed of epigenetic clock and anxiety trait (ab = 0.15, SE = 0.15, 95% CI [0.007; 0.369]). These findings were not replicated, however, in a community-based sample of adolescents (n = 129; 49% men; 12–19 years of age), possibly due to the different method of tissue collection (blood vs. saliva) or additional sources of variability in the cohort of adolescents (puberty stages, socioeconomic status, prenatal exposure to maternal smoking during pregnancy)

    Genetic locus on rat chromosome 20 regulates diet-induced adipocyte hypertrophy: a microarray gene expression study

    No full text
    Obesity is a leading cause of diabetes mellitus and hypertension. Molecular signals produced by adipose tissue may contribute to the pathogenesis of these two disorders. We showed previously that a specific segment of rat chromosome 20 (RNO20) contains a gene(s) regulating the degree of obesity, glucose intolerance, and hypertension in response to a chronic high-fat diet (HFD). Here we examined microarray gene expression profiles and cellular morphology of adipose tissues and whole body energy expenditure in this model. Adult male spontaneously hypertensive rats (SHR) and a congenic strain (SHR.1N) that differs from SHR by the above-mentioned segment of RNO20 were fed for 12 wk with HFD or a normal diet. At the end of this period, whole body energy expenditure was measured with indirect calorimetry. In response to HFD, body weight, fat pad weights, adipocyte size, and serum leptin levels increased significantly more in SHR.1N than SHR. Microarray gene expression profiles [Affymetrix, 15,923 genes and expressed sequence tags (ESTs)] showed that multiple genes of molecular pathways involved in lipogenesis were downregulated to a similar level in both strains, whereas genes involved in fatty acid oxidation and energy dissipation were upregulated less in SHR.1N than SHR. This was associated with lower whole body energy expenditure in SHR.1N than SHR at the end of the 12-wk HFD. Our results suggest that a gene(s) within the RNO20 segment regulate(s) HFD-induced increases in adiposity, and that this effect may be mediated, at least in part, by the impact of that gene(s) on fat burning and energy expenditure
    corecore