23 research outputs found

    Saguenay Youth Study : a multi-generational approach to studying virtual trajectories of the brain and cardio-metabolic health

    Get PDF
    This paper provides an overview of the Saguenay Youth Study (SYS) and its parental arm. The overarching goal of this effort is to develop trans-generational models of developmental cascades contributing to the emergence of common chronic disorders, such as depression, addictions, dementia and cardio-metabolic diseases. Over the past 10 years, we have acquired detailed brain and cardio-metabolic phenotypes, and genome-wide genotypes, in 1029 adolescents recruited in a population with a known genetic founder effect. At present, we are extending this dataset to acquire comparable phenotypes and genotypes in the biological parents of these individuals. After providing conceptual background for this work (transactions across time, systems and organs), we describe briefly the tools employed in the adolescent arm of this cohort and highlight some of the initial accomplishments. We then outline in detail the phenotyping protocol used to acquire comparable data in the parents

    Stress during puberty boosts metabolic activation associated with fear-extinction learning in hippocampus, basal amygdala and cingulate cortex

    Get PDF
    Adolescence is characterized by major developmental changes that may render the individual vulnerable to stress and the development of psychopathologies in a sex-specific manner. Earlier we reported lower anxiety-like behavior and higher risk-taking and novelty seeking in rats previously exposed to peri-pubertal stress. Here we studied whether pen-pubertal stress affected the acquisition and extinction of fear memories and/or the associated functional engagement of various brain regions, as assessed with 2-deoxyglucose. We showed that while pen-pubertal stress reduced freezing during the acquisition of fear memories (training) in both sexes, it had a sex-specific effect on extinction of these memories. Moreover hippocampus, basal amygdala and cingulate and motor cortices showed higher metabolic rates during extinction in rats exposed to pen-pubertal stress. Interestingly, activation of the infralimbic cortex was negatively correlated with freezing during extinction only in control males, while only males stressed during puberty showed a significant correlation between behavior during extinction and metabolic activation of hippocampus, amygdala and paraventricular nucleus. No correlations between brain activation and behavior during extinction were observed in females (control or stress). These results indicate that exposure to pen-pubertal stress affects behavior and brain metabolism when the individual is exposed to an additional stressful challenge. Some of these effects are sex-specific. (C) 2012 Elsevier Inc. All rights reserved

    Income inequality, gene expression, and brain maturation during adolescence

    Get PDF
    Income inequality is associated with poor health and social outcomes. Negative social comparisons and competition may involve the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes in underlying some of these complex inter-relationships. Here we investigate brain maturation, indexed by age-related decreases in cortical thickness, in adolescents living in neighborhoods with differing levels of income inequality and household income. We examine whether inter-regional variations relate to those in glucocorticoid receptor (HPA) and androgen receptor (HPG) gene expression. For each sex, we used a median split of income inequality and household income (income-to-needs ratio) to create four subgroups. In female adolescents, the high-inequality low-income group displayed the greatest age-related decreases in cortical thickness. In this group, expression of glucocorticoid and androgen receptor genes explained the most variance in these age-related decreases in thickness across the cortex. We speculate that female adolescents living in high-inequality neighborhoods and low-income households may experience greater HPA and HPG activity, leading to steeper decreases in cortical thickness with age

    Prenatal exposure to maternal cigarette smoking, amygdala volume, and fat intake in adolescence

    Get PDF
    Context : Prenatal exposure to maternal cigarette smoking is a well-established risk factor for obesity, but the underlying mechanisms are not known. Preference for fatty foods, regulated in part by the brain reward system, may contribute to the development of obesity. Objective : To examine whether prenatal exposure to maternal cigarette smoking is associated with enhanced fat intake and risk for obesity, and whether these associations may be related to subtle structural variations in brain regions involved in reward processing. Design : Cross-sectional study of a population-based cohort. Setting : The Saguenay Youth Study, Quebec, Canada. Participants : A total of 378 adolescents (aged 13 to 19 years; Tanner stage 4 and 5 of sexual maturation), half of whom were exposed prenatally to maternal cigarette smoking (mean [SD], 11.1 [6.8] cigarettes/d). Main Outcome Measures : Fat intake was assessed with a 24-hour food recall (percentage of energy intake consumed as fat). Body adiposity was measured with anthropometry and multifrequency bioimpedance. Volumes of key brain structures involved in reward processing, namely the amygdala, nucleus accumbens, and orbitofrontal cortex, were measured with magnetic resonance imaging. Results : Exposed vs nonexposed subjects exhibited a higher total body fat (by approximately 1.7 kg; P = .009) and fat intake (by 2.7%; P = .001). They also exhibited a lower volume of the amygdala (by 95 mm3; P < .001) but not of the other 2 brain structures. Consistent with its possible role in limiting fat intake, amygdala volume correlated inversely with fat intake (r = −0.15; P = .006). Conclusions : Prenatal exposure to maternal cigarette smoking may promote obesity by enhancing dietary preference for fat, and this effect may be mediated in part through subtle structural variations in the amygdala

    Growth of white matter in the adolescent brain: role of testosterone and androgen receptor

    Get PDF
    The growth of white matter during human adolescence shows a striking sexual dimorphism; the volume of white matter increases with age slightly in girls and steeply in boys. Here, we provide evidence supporting the role of androgen receptor (AR) in mediating the effect of testosterone on white matter. In a large sample of typically developing adolescents (n = 408, 204 males), we used magnetic resonance imaging and acquired T1-weighted and magnetization transfer ratio (MTR) images. We also measured plasma levels of testosterone and genotyped a functional polymorphism in the AR gene, namely the number of CAG repeats in exon 1 believed to be inversely proportional to the AR transcriptional activity. We found that the testosterone-related increase of white-matter volume was stronger in male adolescents with the lower versus higher number of CAG repeats in the AR gene, with testosterone explaining, respectively, 26 and 8% of variance in the volume. The MTR results suggest that this growth is not related to myelination; the MTR decreased with age in male adolescents. We speculate that testosterone affects axonal caliber rather than the thickness of the myelin sheath

    Orbitofrontal cortex and drug use during adolescence : role of prenatal exposure to maternal smoking and BDNF genotype

    Get PDF
    Context : Prenatal exposure to maternal cigarette smoking (PEMCS) may affect brain development and behavior in adolescent offspring. Objective : To evaluate the involvement of the orbitofrontal cortex (OFC) in mediating the relationship between PEMCS and substance use. Design : Cross-sectional analyses from the Saguenay Youth Study aimed at evaluating the effects of PEMCS on brain development and behavior among adolescents. Nonexposed adolescents were matched with adolescents exposed prenatally to cigarette smoking by maternal educational level. Participants and Setting : A French Canadian founder population of the Saguenay–Lac-Saint-Jean region of Quebec, Canada.The behavioral data set included 597 adolescents (275 sibships; 12-18 years of age), half of whom were exposed in utero to maternal cigarette smoking. Analysis of cortical thickness and genotyping were performed using available data from 314 adolescents. Main Outcome Measures : The likelihood of substance use was assessed with the Diagnostic Interview Schedule for Children Predictive Scales. The number of different drugs tried by each adolescent was assessed using another questionnaire. Thickness of the OFC was estimated from T1-weighted magnetic resonance images using FreeSurfer software. Results : Prenatal exposure to maternal cigarette smoking is associated with an increased likelihood of substance use. Among exposed adolescents, the likelihood of drug experimentation correlates with the degree of OFC thinning. In nonexposed adolescents, the thickness of the OFC increases as a function of the number of drugs tried. The latter effect is moderated by a brain-derived neurotrophic factor (BDNF) genotype (Val66Met). Conclusions : We speculate that PEMCS interferes with the development of the OFC and, in turn, increases the likelihood of drug use among adolescents. In contrast, we suggest that, among nonexposed adolescents, drug experimentation influences the OFC thickness via processes akin to experience-induced plasticity

    Growth of White Matter in the Adolescent Brain: Role of Testosterone and Androgen Receptor

    Get PDF
    The growth of white matter during human adolescence shows a striking sexual dimorphism; the volume of white matter increases with age slightly in girls and steeply in boys. Here, we provide evidence supporting the role of androgen receptor (AR) in mediating the effect of testosterone on white matter. In a large sample of typically developing adolescents (n = 408, 204 males), we used magnetic resonance imaging and acquired T1-weighted and magnetization transfer ratio (MTR) images. We also measured plasma levels of testosterone and genotyped a functional polymorphism in the AR gene, namely the number of CAG repeats in exon 1 believed to be inversely proportional to the AR transcriptional activity. We found that the testosterone-related increase of white-matter volume was stronger in male adolescents with the lower versus higher number of CAG repeats in the AR gene, with testosterone explaining, respectively, 26 and 8% of variance in the volume. The MTR results suggest that this growth is not related to myelination; the MTR decreased with age in male adolescents. We speculate that testosterone affects axonal caliber rather than the thickness of the myelin sheath

    Neural correlates of the dual pathway model for attention-deficit/hyperactivity disorder in adolescents

    Get PDF
    Objective:The dual-pathway model has been proposed to explain the heterogeneity in symptoms of attention deficit hyperactivity disorder (ADHD) by two independent psychological pathways based on distinct brain circuits. The authors sought to test whether the hypothesized cognitive and motivational pathways have separable neural correlates.Methods:In a longitudinal community-based cohort of 1,963 adolescents, the neuroanatomical correlates of ADHD were identified by a voxel-wise association analysis and then validated using an independent clinical sample (99 never-medicated patients with ADHD, 56 medicated patients with ADHD, and 267 healthy control subjects). The cognitive and motivational pathways were assessed by neuropsychological tests of working memory, intrasubject variability, stop-signal reaction time, and delay discounting. The associations were tested between the identified neuroanatomical correlates and both ADHD symptoms 2 years later and the polygenic risk score for ADHD.Results:Gray matter volumes of both a prefrontal cluster and a posterior occipital cluster were negatively associated with inattention. Compared with healthy control subjects, never-medicated patients, but not medicated patients, had significantly lower gray matter volumes in these two clusters. Working memory and intrasubject variability were associated with the posterior occipital cluster, and delay discounting was independently associated with both clusters. The baseline gray matter volume of the posterior occipital cluster predicted the inattention symptoms in a 2-year follow-up and was associated with the genetic risk for ADHD.Conclusions:The dual-pathway model has both shared and separable neuroanatomical correlates, and the shared correlate in the occipital cortex has the potential to serve as an imaging trait marker of ADHD, especially the inattention symptom domain

    Mapping Brain Development and Aggression

    No full text
    Introduction: This article provides an overview of the basic principles guiding research on brain-behaviour relationships in general, and as applied to studies of aggression during human development in particular. Method: Key literature on magnetic resonance imaging of the structure and function of a developin
    corecore