3 research outputs found

    Biogenic Organic Aerosol as an indicator of the forest abiotic stress

    No full text
    Volatile organic compounds (VOCs) have a substantial impact on the oxidant balance of the lower layers of the atmosphere. As result, they affect tree growth and ecosystem performance. Also, VOCs play significant role in new particle formation process and they change physicochemical properties of the existing particles. Wherein, such ecosystem like forest are the main source of the biogenic VOCs and in the global scale their emissions higher than anthropogenic VOCs. Thus, we investigated the changes of the physicochemical properties of the aerosol particles in forest environment. The measurements were performed applying a Scanning Mobility Particle Sizer, an Aerodynamic Particle Spectrometer and an Aerosol Chemical Speciation Monitor. During measurement campaign, it was observed new particle formation phenomena. Fresh nucleated particles were characterized by low oxidation level and high particle number concentration of the nucleation mode. Wherein, the polydisperse coagulation process was much higher than the condensation growth of the nucleated particles. Also, we determined that the nucleation process of the aerosol particle was related with the trees abiotic stress, which was observed by temperature increase. The analyse of the aerosol mass spectra showed that the methanol (CH3OH, m/z 33), acetone (C3H6O2, m/z 59), methyl-ethyle-ketone (C4H8O, m/z 73) and salicyl-aldehyde (C7H8O2, m/z 123) emissions were identified as heat related. Meanwhile, methanol, acetone and methyl emissions showed great dependency of heat and light. They showed high correlation (>0.9) with one another. However, the salicyl-aldehyde could be assigned to heat stress marker. Thus, we can conclude that biogenic organic aerosol particles can be an indicator of the abiotic stress of the forest and that could to expand understanding of the forest ecosystem. The study is based on the results from national project supported by Lithuanian Council of Research "FOREstRESS"(SIT - 3/2015)Fizinių ir technologijos mokslų centrasVytauto Didžiojo universitetasŽemės ūkio akademij

    Indoor-outdoor relationship of submicron particulate matter in mechanically ventilated building: Chemical composition, sources and infiltration factor.

    No full text
    To evaluate the impact of outdoor particulate pollution on indoor air quality, the chemical composition and sources of submicron aerosol particles (PM1) were studied indoors and outdoors. Measurements were carried out during the heating season from October 15, 2020, to February 8, 2021, at the Center for Physical Sciences and Technologies in Vilnius, Lithuania. Online measurements of PM1 chemical composition were performed using an Aerosol Chemical Speciation Monitor (ACSM (organics, sulfate, and nitrate)) and an Aethalometer (equivalent black carbon, BC). In parallel with the online measurements, filter-based elemental composition and 14C analysis of PM1 were performed using a Particle-Induced broad-beam X-ray Emission (PIXE) and a Single Stage Accelerated Mass Spectrometer (SSAMS), respectively. The source apportionment results showed a dominant contribution of biomass burning to the total carbonaceous aerosol particles, including primary (30%) and secondary (40%) fractions. According to the enrichment factors, the main source of trace elements was road dust resuspension (30%), while anthropogenic emissions accounted for only 13% of trace elements. The infiltration factor (Finf) of all studied PM1 constituents was low (Finf∼0.03). This result indicates that the three-stage building filter system (G4-F7-F9) provides high protection against particle pollution of different origins and significantly reduces indoor exposure to PM1. The changed chemical composition of indoor PM1 can be attributed to species-specific evaporation and some minor indoor sources
    corecore