35 research outputs found

    Chlamydia Trachomatis Subverts Alpha-Actinins To Stabilize Its Inclusion

    Get PDF
    Chlamydia trachomatis is the leading cause of sexually transmitted bacterial disease and a global health burden. As an obligate intracellular pathogen, Chlamydia has evolved many strategies to manipulate its host and establish its intracellular niche called the inclusion. C. trachomatis reorganizes the host actin cytoskeleton to form scaffolds around the inclusion and reinforce the growing inclusion membrane. To control the kinetics and formation of actin scaffolds, Chlamydia expresses the effector InaC/CT813, which activates the host GTPase RhoA. Here, we have discovered that InaC stabilizes actin scaffolds through the host actin cross-linking proteins α-actinins 1 and 4. We demonstrate that α-actinins are recruited to the inclusion membrane in an InaC-dependent manner and associate with actin scaffolds that envelop the inclusion. Small interfering RNA (siRNA)-mediated knockdown of α-actinins differentially regulate the frequency of actin scaffolds and impair inclusion stability, leaving them susceptible to rupture and to nonionic detergent extraction. Overall, our data identify new host effectors that are subverted by InaC to stabilize actin scaffolds, highlighting the versatility of InaC as a key regulator of the host cytoskeletal network during Chlamydia infection

    Intracellular Bacteria Encode Inhibitory SNARE-Like Proteins

    Get PDF
    Pathogens use diverse molecular machines to penetrate host cells and manipulate intracellular vesicular trafficking. Viruses employ glycoproteins, functionally and structurally similar to the SNARE proteins, to induce eukaryotic membrane fusion. Intracellular pathogens, on the other hand, need to block fusion of their infectious phagosomes with various endocytic compartments to escape from the degradative pathway. The molecular details concerning the mechanisms underlying this process are lacking. Using both an in vitro liposome fusion assay and a cellular assay, we showed that SNARE-like bacterial proteins block membrane fusion in eukaryotic cells by directly inhibiting SNARE-mediated membrane fusion. More specifically, we showed that IncA and IcmG/DotF, two SNARE-like proteins respectively expressed by Chlamydia and Legionella, inhibit the endocytic SNARE machinery. Furthermore, we identified that the SNARE-like motif present in these bacterial proteins encodes the inhibitory function. This finding suggests that SNARE-like motifs are capable of specifically manipulating membrane fusion in a wide variety of biological environments. Ultimately, this motif may have been selected during evolution because it is an efficient structural motif for modifying eukaryotic membrane fusion and thus contribute to pathogen survival

    SNARE Protein Mimicry by an Intracellular Bacterium

    Get PDF
    Many intracellular pathogens rely on host cell membrane compartments for their survival. The strategies they have developed to subvert intracellular trafficking are often unknown, and SNARE proteins, which are essential for membrane fusion, are possible targets. The obligate intracellular bacteria Chlamydia replicate within an intracellular vacuole, termed an inclusion. A large family of bacterial proteins is inserted in the inclusion membrane, and the role of these inclusion proteins is mostly unknown. Here we identify SNARE-like motifs in the inclusion protein IncA, which are conserved among most Chlamydia species. We show that IncA can bind directly to several host SNARE proteins. A subset of SNAREs is specifically recruited to the immediate vicinity of the inclusion membrane, and their accumulation is reduced around inclusions that lack IncA, demonstrating that IncA plays a predominant role in SNARE recruitment. However, interaction with the SNARE machinery is probably not restricted to IncA as at least another inclusion protein shows similarities with SNARE motifs and can interact with SNAREs. We modelled IncA's association with host SNAREs. The analysis of intermolecular contacts showed that the IncA SNARE-like motif can make specific interactions with host SNARE motifs similar to those found in a bona fide SNARE complex. Moreover, point mutations in the central layer of IncA SNARE-like motifs resulted in the loss of binding to host SNAREs. Altogether, our data demonstrate for the first time mimicry of the SNARE motif by a bacterium

    Functional Interaction between Type III-Secreted Protein IncA of Chlamydophila psittaci and Human G3BP1

    Get PDF
    Chlamydophila (Cp.) psittaci, the causative agent of psittacosis in birds and humans, is the most important zoonotic pathogen of the family Chlamydiaceae. These obligate intracellular bacteria are distinguished by a unique biphasic developmental cycle, which includes proliferation in a membrane-bound compartment termed inclusion. All Chlamydiaceae spp. possess a coding capacity for core components of a Type III secretion apparatus, which mediates specific delivery of anti-host effector proteins either into the chlamydial inclusion membrane or into the cytoplasm of target eukaryotic cells. Here we describe the interaction between Type III-secreted protein IncA of Cp. psittaci and host protein G3BP1 in a yeast two-hybrid system. In GST-pull down and co-immunoprecipitation experiments both in vitro and in vivo interaction between full-length IncA and G3BP1 were shown. Using fluorescence microscopy, the localization of G3BP1 near the inclusion membrane of Cp. psittaci-infected Hep-2 cells was demonstrated. Notably, infection of Hep-2 cells with Cp. psittaci and overexpression of IncA in HEK293 cells led to a decrease in c-Myc protein concentration. This effect could be ascribed to the interaction between IncA and G3BP1 since overexpression of an IncA mutant construct disabled to interact with G3BP1 failed to reduce c-Myc concentration. We hypothesize that lowering the host cell c-Myc protein concentration may be part of a strategy employed by Cp. psittaci to avoid apoptosis and scale down host cell proliferation

    The binding of Varp to VAMP7 traps VAMP7 in a closed, fusogenically inactive conformation.

    Get PDF
    SNAREs provide energy and specificity to membrane fusion events. Fusogenic trans-SNARE complexes are assembled from glutamine-contributing SNAREs (Q-SNAREs) embedded in one membrane and an arginine-contributing SNARE (R-SNARE) embedded in the other. Regulation of membrane fusion events is crucial for intracellular trafficking. We identify the endosomal protein Varp as an R-SNARE-binding regulator of SNARE complex formation. Varp colocalizes with and binds to VAMP7, an R-SNARE that is involved in both endocytic and secretory pathways. We present the structure of the second ankyrin repeat domain of mammalian Varp in complex with the cytosolic portion of VAMP7. The VAMP7-SNARE motif is trapped between Varp and the VAMP7 longin domain, and hence Varp kinetically inhibits the ability of VAMP7 to form SNARE complexes. This inhibition will be increased when Varp can also bind to other proteins present on the same membrane as VAMP7, such as Rab32-GTP

    A novel function for SNAP29 (synaptosomal-associated protein of 29 kDa) in mast cell phagocytosis.

    Get PDF
    Mast cells play a critical role in the innate immune response to bacterial infection. They internalize and kill a variety of bacteria and process antigen for presentation to T cells via MHC molecules. Although mast cell phagocytosis appears to play a significant role during bacterial infection, little is known about the proteins involved in its regulation. In this study, we demonstrate that the SNARE protein SNAP29 is involved in mast cell phagocytosis. SNAP29 is localized in the endocytic pathway and is transiently recruited to Escherichia coli (E. coli)-containing phagosomes. Interestingly, overexpression of SNAP29 significantly increases the internalization and killing of E. coli, while it does not affect mast cell exocytosis of inflammatory mediators. To our knowledge, these data are the first to demonstrate a novel function of SNAP29 in mast cell phagocytosis and have implications in protection against bacterial infection
    corecore