2,864 research outputs found

    Unconventional antiferromagnetic correlations of the doped Haldane gap system Y2_2BaNi1x_{1-x}Znx_xO5_5

    Full text link
    We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2_2BaNi1x_{1-x}Znx_xO5_5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ(T)C/(Θ+T)\chi(T) \sim C / (\Theta+T) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the ``impurity'' susceptibility χimp(T)\chi_{imp}(T) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by Tχimp(T)=Cimp(1+Timp/T)γT \chi_{imp}(T) = C_{imp} (1 + T_{imp}/T )^{-\gamma}. In the temperature range [100 mK, 1 K] the experimental data are well fitted by Tχimp(T)=Aln(T/Tc)T \chi_{imp}(T) = A \ln{(T/T_c)}, where TcT_c increases with xx. This fit suggests the existence of a finite N\'eel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility χ(T)\chi'(T) which suggests the existence of antiferromagnetic correlations at very low temperature.Comment: 19 pages, 17 figures, revised version (minor modifications

    Low-Temperature Features of Nano-Particle Dynamics

    Full text link
    In view of better characterizing possible quantum effects in the dynamics of nanometric particles, we measure the effect on the relaxation of a slight heating cycle. The effect of the field amplitude is studied; its magnitude is chosen in order to induce the relaxation of large particles (~7nm), even at very low temperatures (100mK). Below 1K, the results significantly depart from a simple thermal dynamics scenario.Comment: 1 tex file, 4 PostScript figure

    Dynamic behavior of magnetic avalanches in the spin-ice compound Dy2_2Ti2_2O7_7

    Get PDF
    Avalanches of the magnetization, that is to say an abrupt reversal of the magnetization at a given field, have been previously reported in the spin-ice compound Dy2_{2}Ti2_{2}O7_{7}. This out-of-equilibrium process, induced by magneto-thermal heating, is quite usual in low temperature magnetization studies. A key point is to determine the physical origin of the avalanche process. In particular, in spin-ice compounds, the origin of the avalanches might be related to the monopole physics inherent to the system. We have performed a detailed study of the avalanche phenomena in three single crystals, with the field oriented along the [111] direction, perpendicular to [111] and along the [100] directions. We have measured the changing magnetization during the avalanches and conclude that avalanches in spin ice are quite slow compared to the avalanches reported in other systems such as molecular magnets. Our measurements show that the avalanches trigger after a delay of about 500 ms and that the reversal of the magnetization then occurs in a few hundreds of milliseconds. These features suggest an unusual propagation of the reversal, which might be due to the monopole motion. The avalanche fields seem to be reproducible in a given direction for different samples, but they strongly depend on the initial state of magnetization and on how the initial state was achieved.Comment: 11 pages, 14 figure

    Experimental Upper Bound on Superradiance Emission from Mn12 Acetate

    Full text link
    We used a Josephson junction as a radiation detector to look for evidence of the emission of electromagnetic radiation during magnetization avalanches in a crystal assembly of Mn_12-Acetate. The crystal assembly exhibits avalanches at several magnetic fields in the temperature range from 1.8 to 2.6 K with durations of the order of 1 ms. Although a recent study shows evidence of electromagnetic radiation bursts during these avalanches [J. Tejada, et al., Appl. Phys. Lett. {\bf 84}, 2373 (2004)], we were unable to detect any significant radiation at well-defined frequencies. A control experiment with external radiation pulses allows us to determine that the energy released as radiation during an avalanche is less than 1 part in 10^4 of the total energy released. In addition, our avalanche data indicates that the magnetization reversal process does not occur uniformly throughout the sample.Comment: 4 RevTeX pages, 3 eps figure

    Domain Wall Spin Dynamics in Kagome Antiferromagnets

    Full text link
    We report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls intersecting the kagome planes through strings of free spins. These produce unfamiliar slow spin dynamics in the ordered phase, evolving from exchange-released spin-flips towards a cooperative behavior on decreasing the temperature, probably due to the onset of long-range dipolar interaction. A domain structure of independent magnetic grains is obtained that could be generic to other frustrated magnets.Comment: 5 pages, 4 figure

    Propagation of Avalanches in Mn12_{12}-acetate: Magnetic Deflagration

    Full text link
    Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly two orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance.Comment: 5 pages, 5 figure

    Generalized Bell Inequality Experiments and Computation

    Full text link
    We consider general settings of Bell inequality experiments with many parties, where each party chooses from a finite number of measurement settings each with a finite number of outcomes. We investigate the constraints that Bell inequalities place upon the correlations possible in a local hidden variable theories using a geometrical picture of correlations. We show that local hidden variable theories can be characterized in terms of limited computational expressiveness, which allows us to characterize families of Bell inequalities. The limited computational expressiveness for many settings (each with many outcomes) generalizes previous results about the many-party situation each with a choice of two possible measurements (each with two outcomes). Using this computational picture we present generalizations of the Popescu-Rohrlich non-local box for many parties and non-binary inputs and outputs at each site. Finally, we comment on the effect of pre-processing on measurement data in our generalized setting and show that it becomes problematic outside of the binary setting, in that it allows local hidden variable theories to simulate maximally non-local correlations such as those of these generalised Popescu-Rohrlich non-local boxes.Comment: 16 pages, 2 figures, supplemental material available upon request. Typos corrected and references adde

    Quantum Decoherence of Two Qubits

    Full text link
    It is commonly stated that decoherence in open quantum systems is due to growing entanglement with an environment. In practice, however, surprisingly often decoherence may equally well be described by random unitary dynamics without invoking a quantum environment at all. For a single qubit, for instance, pure decoherence (or phase damping) is always of random unitary type. Here, we construct a simple example of true quantum decoherence of two qubits: we present a feasible phase damping channel of which we show that it cannot be understood in terms of random unitary dynamics. We give a very intuitive geometrical measure for the positive distance of our channel to the convex set of random unitary channels and find remarkable agreement with the so-called Birkhoff defect based on the norm of complete boundedness.Comment: 5 pages, 4 figure

    All Teleportation and Dense Coding Schemes

    Get PDF
    We establish a one-to-one correspondence between (1) quantum teleportation schemes, (2) dense coding schemes, (3) orthonormal bases of maximally entangled vectors, (4) orthonormal bases of unitary operators with respect to the Hilbert-Schmidt scalar product, and (5) depolarizing operations, whose Kraus operators can be chosen to be unitary. The teleportation and dense coding schemes are assumed to be ``tight'' in the sense that all Hilbert spaces involved have the same finite dimension d, and the classical channel involved distinguishes d^2 signals. A general construction procedure for orthonormal bases of unitaries, involving Latin Squares and complex Hadamard Matrices is also presented.Comment: 21 pages, LaTe
    corecore