3,822 research outputs found
Low-Temperature Features of Nano-Particle Dynamics
In view of better characterizing possible quantum effects in the dynamics of
nanometric particles, we measure the effect on the relaxation of a slight
heating cycle. The effect of the field amplitude is studied; its magnitude is
chosen in order to induce the relaxation of large particles (~7nm), even at
very low temperatures (100mK). Below 1K, the results significantly depart from
a simple thermal dynamics scenario.Comment: 1 tex file, 4 PostScript figure
The inexorable resistance of inertia determines the initial regime of drop coalescence
Drop coalescence is central to diverse processes involving dispersions of
drops in industrial, engineering and scientific realms. During coalescence, two
drops first touch and then merge as the liquid neck connecting them grows from
initially microscopic scales to a size comparable to the drop diameters. The
curvature of the interface is infinite at the point where the drops first make
contact, and the flows that ensue as the two drops coalesce are intimately
coupled to this singularity in the dynamics. Conventionally, this process has
been thought to have just two dynamical regimes: a viscous and an inertial
regime with a crossover region between them. We use experiments and simulations
to reveal that a third regime, one that describes the initial dynamics of
coalescence for all drop viscosities, has been missed. An argument based on
force balance allows the construction of a new coalescence phase diagram
Decoherence and Entanglement Dynamics in Fluctuating Fields
We study pure phase damping of two qubits due to fluctuating fields. As
frequently employed, decoherence is thus described in terms of random unitary
(RU) dynamics, i.e., a convex mixture of unitary transformations. Based on a
separation of the dynamics into an average Hamiltonian and a noise channel, we
are able to analytically determine the evolution of both entanglement and
purity. This enables us to characterize the dynamics in a concurrence-purity
(CP) diagram: we find that RU phase damping dynamics sets constraints on
accessible regions in the CP plane. We show that initial state and dynamics
contribute to final entanglement independently.Comment: 10 pages, 5 figures, added minor changes in order to match published
versio
Optimal discrimination of quantum operations
We address the problem of discriminating with minimal error probability two
given quantum operations. We show that the use of entangled input states
generally improves the discrimination. For Pauli channels we provide a complete
comparison of the optimal strategies where either entangled or unentangled
input states are used.Comment: 4 pages, no figure
Microwave Tomographic Imaging Utilizing Low-Profile, Rotating, Right Angle-Bent Monopole Antennas
We have developed a simple mechanism incorporating feedline bends and rotary joints to enable motion of a monopole antenna within a liquid-based illumination chamber for tomographic imaging. The monopole is particularly well suited for this scenario because of its small size and simplicity. For the application presented here a full set of measurement data is collected from most illumination and receive directions utilizing only a pair of antennas configured with the rotating fixture underneath the imaging tank. Alternatively, the concept can be adapted for feed structures entering the tank from the sides to allow for measurements with vertically and horizontally polarized antennas. This opens the door for more advanced imaging applications where anisotropy could play an important role such as in bone imaging
Dynamic behavior of magnetic avalanches in the spin-ice compound DyTiO
Avalanches of the magnetization, that is to say an abrupt reversal of the
magnetization at a given field, have been previously reported in the spin-ice
compound DyTiO. This out-of-equilibrium process, induced by
magneto-thermal heating, is quite usual in low temperature magnetization
studies. A key point is to determine the physical origin of the avalanche
process. In particular, in spin-ice compounds, the origin of the avalanches
might be related to the monopole physics inherent to the system. We have
performed a detailed study of the avalanche phenomena in three single crystals,
with the field oriented along the [111] direction, perpendicular to [111] and
along the [100] directions. We have measured the changing magnetization during
the avalanches and conclude that avalanches in spin ice are quite slow compared
to the avalanches reported in other systems such as molecular magnets. Our
measurements show that the avalanches trigger after a delay of about 500 ms and
that the reversal of the magnetization then occurs in a few hundreds of
milliseconds. These features suggest an unusual propagation of the reversal,
which might be due to the monopole motion. The avalanche fields seem to be
reproducible in a given direction for different samples, but they strongly
depend on the initial state of magnetization and on how the initial state was
achieved.Comment: 11 pages, 14 figure
Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering
Nuclear inelastic scattering of synchrotron radiation has been used now since
10 years as a tool for vibrational spectroscopy. This method has turned out
especially useful in case of large molecules that contain a M\"ossbauer active
metal center. Recent applications to iron-sulfur proteins, to iron(II) spin
crossover complexes and to tin-DNA complexes are discussed. Special emphasis is
given to the combination of nuclear inelastic scattering and density functional
calculations
Quantum Decoherence of Two Qubits
It is commonly stated that decoherence in open quantum systems is due to
growing entanglement with an environment. In practice, however, surprisingly
often decoherence may equally well be described by random unitary dynamics
without invoking a quantum environment at all. For a single qubit, for
instance, pure decoherence (or phase damping) is always of random unitary type.
Here, we construct a simple example of true quantum decoherence of two qubits:
we present a feasible phase damping channel of which we show that it cannot be
understood in terms of random unitary dynamics. We give a very intuitive
geometrical measure for the positive distance of our channel to the convex set
of random unitary channels and find remarkable agreement with the so-called
Birkhoff defect based on the norm of complete boundedness.Comment: 5 pages, 4 figure
- …