14 research outputs found

    Hybrid Controller based on Null Space and Consensus Algorithms for Mobile Robot Formation

    Get PDF
    This work presents a novel hybrid control approach based on null space and consensus algorithms to solve the scalability problems of mobile robot formation and improve leader control through multiple control objectives. In previous works, the training of robots based on the null space requires a rigid training structure based on a geometric shape, which increases the number of agents in the formation. The scheme of the control algorithm, which does not make formation scalability possible, must be changed; therefore, seeking the scalability of training based on null space is a challenge that could be solved with the inclusion of consensus algorithms, which allow the control structure to be maintained despite increasing or decreasing the number of robot followers. Another advantage of this proposal is that the formation of the followers does not depend on any geometric figure compared to previous works based on the null space; this new proposal does not present singularities as if the structure is based on geometric shape, the latter one is crucial since the formation of agents can take forms that cannot be achieved with a geometric structure, such as collinear locations, that can occur in many environments. The proposed hybrid control approach presents three tasks: i) leader position task, ii) leader shape task, and iii) follower formation task. The proposed algorithm is validated through simulations, performing tests that use the kinematic model of non-holonomic mobile robots. In addition, linear algebra and Lyapunov theory are used to analyze the stability of the method. Doi: 10.28991/ESJ-2022-06-03-01 Full Text: PD

    Sliding Mode Control Based on Internal Model for a Non-minimum phase Buck and Boost Converter

    Get PDF
    This work presents the application of different schemes to control a non-minimum phase Buck-Boost converter. Three control schemes are used. The first controller presented is a PI controller, the second one is Sliding Mode Control and the third one is a combination of two control schemes, Internal Model Control and Sliding Mode Control. The controllers are designed from a Right-Half Plane Zero (RHPZ) reduced order model. The RHPZ model is converted, using Taylor approximation, in a First Order Plus Dead Time (FOPDT) model and after that, the controllers are obtained. The performance of the SMC-IMC is compared against to a PI controller and a SMC. The simulation results show that SMC-IMC improves the converter response, reducing the chattering and presenting better robustness for load change

    LAMDA Controller Applied to the Trajectory Tracking of an Aerial Manipulator

    No full text
    In this work, a novel LAMDA (Learning Algorithm for Multivariable Data Analysis) control strategy for trajectory tracking for an aerial manipulator is presented. Four control strategies are developed: Kinematic, Inverse Dynamics, Sliding Mode (SMC), and LAMDA. These are compared with each other in order to verify their performance to fulfill the control objective. Experimental tests were also carried out to validate the developed controllers. In addition, a study of stability has been also performed for all the controllers. The results obtained by the LAMDA controller demonstrated the good performance of the controller in the aerial manipulator robot. To the best of our knowledge, this is the first time a LAMDA controller has been applied to an aerial robotic manipulator

    Switched control to human-robot bilateral interaction for guiding people

    No full text
    This paper presents a switched control strategy to interprete and design a human-robot bilateral interaction when a human follows a non-holonomic mobile robot at a desired distance while the robot is already following a known path. Furthermore, it proposes and experimentally validates a model that mathematically describes the human behavior when performing the specific task of tracking a mobile robot. This model is useful for the purposes of the control system design and its associated stability analysis. A switched system is proposed to model the complete human-robot behavior. The switching strategy is based on the human-robot relative position and on the human intention to follow the robot. Control errors are defined in terms of human to robot and robot to path instantaneous distances. Stability analysis for the individual controllers, as well as for the complete switching system, are provided by considering Lyapunov theory. Real human-robot interaction experiments show the good performance of the proposed control strategy. Fil: Leica Arteaga, Paulo Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaFil: Toibero, Juan Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaFil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentin

    Control of bidirectional physical human-robot interaction based on the human intention

    No full text
    This paper presents a control strategy for human–robot interaction with physical contact, recognizing the human intention to control the movement of a non-holonomic mobile robot. The human intention is modeled by mechanical impedance, sensing the human-desired force intensity and the human-desired force direction to guide the robot through unstructured environments. Robot dynamics is included to improve the interaction performance. Stability analysis of the proposed control system is proved by using Lyapunov theory. Real experiments of the human–robot interaction show the performance of the proposed controllers.Fil: Leica Arteaga, Paulo Cesar. Escuela Politécnica Nacional; EcuadorFil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Monllor, Matias Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Toibero, Juan Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin

    3D Formation Control of Autonomous Vehicles Based on Null-Space

    No full text
    This paper proposes a new algorithm for controlling a formation of multiple autonomous aerial vehicles based on multiple control objectives. The strategy includes using the null space of a Jacobian matrix to achieve the different control objectives in a non-conflicting way. The mission is split into two elementary tasks, with suitable command references generated for each robot. The commands for each task are combined through a hierarchical method by using the projection of commands onto the null space. The incorporation of ground vehicles in the control scheme is also considered, thus extending the proposed scheme for controlling heterogeneous formations. The stability analysis of the control system shows that such a system is asymptotically stable, and experimental results validate the proposed control system.Fil: Rosales, Claudio Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Leica Arteaga, Paulo Cesar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Sarcinelli Filho, Mario. Universidade Federal do Espírito Santo; BrasilFil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin

    Strategy Based on Multiple Objectives and Null Space for the Formation of Mobile Robots and Dynamic Obstacle Avoidance

    Get PDF
    En este trabajo se presenta un nuevo algoritmo para el control de formación flexible de robots móviles basado en múltiples objetivos de control. La estrategia contempla el uso del espacio nulo de una matriz Jacobiana para el control de forma y postura. La estrategia de evasión de obstáculos está basada en la definición de energía potencial ficticia. Se establece como objetivo primario el control de forma y evasión de obstáculos, y como objetivo secundario el control de postura y seguimiento de trayectoria de la formación de los robots. Se analiza la estabilidad de los controladores implementados y se presentan los resultados obtenidos por simulación que muestran el correcto desempeño de los controladores.In this paper, a new algorithm for controlling mobile robot flexible formation based on multiple control objectives is presented. The strategy includes the use of null space for shape and posture control. The obstacle avoidance strategy is based on the definition of fictitious potential energy. The primary objective established is to shape control and obstacle avoidance, whereas the secondary objective includes the posture control and trajectory tracking of the robot formation. Stability analysis of the proposed control system is proven. Simulation results show the performance of the proposed controllers.Fil: Leica Arteaga, Paulo Cesar. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Chavez Garcia, Geovanny Danilo. Escuela Politécnica Nacional. Facultad de Ingeniería Electrónica y Electrónica; EcuadorFil: Rosales, Andrés. Escuela Politécnica Nacional. Facultad de Ingeniería Electrónica y Electrónica; EcuadorFil: Roberti, Flavio. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Toibero, Juan Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin
    corecore