5 research outputs found

    Statistical mechanics of animal movement: Animals's decision-making can result in superdiffusive spread

    No full text
    Peculiarities of individual animal movement and dispersal have been a major focus of recent research as they are thought to hold the key to the understanding of many phenomena in spatial ecology. Superdiffusive spread and long-distance dispersal have been observed in different species but the underlying biological mechanisms often remain obscure. In particular, the effect of relevant animal behavior has been largely unaddressed. In this paper, we show that a superdiffusive spread can arise naturally as a result of animal behavioral response to small-scale environmental stochasticity. Surprisingly, the emerging fast spread does not require the standard assumption about the fat tail of the dispersal kernel

    How animals move along? Exactly solvable model of superdiffusive spread resulting from animal's decision making

    No full text
    Patterns of individual animal movement have been a focus of considerable attention recently. Of particular interest is a question how different macroscopic properties of animal dispersal result from the stochastic processes occurring on the microscale of the individual behavior. In this paper, we perform a comprehensive analytical study of a model where the animal changes the movement velocity as a result of its behavioral response to environmental stochasticity. The stochasticity is assumed to manifest itself through certain signals, and the animal modifies its velocity as a response to the signals. We consider two different cases, i.e. where the change in the velocity is or is not correlated to its current value. We show that in both cases the early, transient stage of the animal movement is super-diffusive, i.e. ballistic. The large-time asymptotic behavior appears to be diffusive in the uncorrelated case but super-ballistic in the correlated case. We also calculate analytically the dispersal kernel of the movement and show that, whilst it converge to a normal distribution in the large-time limit, it possesses a fatter tail during the transient stage, i.e. at early and intermediate time. Since the transients are known to be highly relevant in ecology, our findings may indicate that the fat tails and superdiffusive spread that are sometimes observed in the movement data may be a feature of the transitional dynamics rather than an inherent property of the animal movement

    A random acceleration model of individual animal movement allowing for diffusive, superdiffusive and superballistic regimes

    No full text
    Patterns of individual animal movement attracted considerable attention over the last two decades. In particular, question as to whether animal movement is predominantly diffusive or superdiffusive has been a focus of discussion and controversy. We consider this problem using a theory of stochastic motion based on the Langevin equation with non-Wiener stochastic forcing that originates in animal's response to environmental noise. We show that diffusive and superdiffusive types of motion are inherent parts of the same general movement process that arises as interplay between the force exerted by animals (essentially, by animal's muscles) and the environmental drag. The movement is superballistic with the mean square displacement growing with time as 〈x 2 (t)〉 ∼ t 4 at the beginning and eventually slowing down to the diffusive spread 〈x 2 (t)〉 ∼ t. We show that the duration of the superballistic and superdiffusive stages can be long depending on the properties of the environmental noise and the intensity of drag. Our findings demonstrate theoretically how the movement pattern that includes diffusive and superdiffusive/superballistic motion arises naturally as a result of the interplay between the dissipative properties of the environment and the animal's biological traits such as the body mass, typical movement velocity and the typical duration of uninterrupted movement

    A random walk description of individual animal movement accounting for periods of rest

    No full text
    Animals do not move all the time but alternate the period of actual movement (foraging) with periods of rest (e.g. eating or sleeping). Although the existence of rest times is widely acknowledged in the literature and has even become a focus of increased attention recently, the theoretical approaches to describe animal movement by calculating the dispersal kernel and/or the mean squared displacement (MSD) rarely take rests into account. In this study, we aim to bridge this gap. We consider a composite stochastic process where the periods of active dispersal or ‘bouts’ (described by a certain baseline probability density function (pdf) of animal dispersal) alternate with periods of immobility. For this process, we derive a general equation that determines the pdf of this composite movement. The equation is analysed in detail in two special but important cases such as the standard Brownian motion described by a Gaussian kernel and the Levy flight described by a Cauchy distribution. For the Brownian motion, we show that in the large-time asymptotics the effect of rests results in a rescaling of the diffusion coefficient. The movement occurs as a subdiffusive transition between the two diffusive asymptotics. Interestingly, the Levy flight case shows similar properties, which indicates a certain universality of our findings

    The "Lévy or diffusion" Controversy: How important is the movement pattern in the context of trapping?

    No full text
    Many empirical and theoretical studies indicate that Brownian motion and diffusion models as its mean field counterpart provide appropriate modeling techniques for individual insect movement. However, this traditional approach has been challenged, and conflicting evidence suggests that an alternative movement pattern such as Lévy walks can provide a better description. Lévy walks differ from Brownian motion since they allow for a higher frequency of large steps, resulting in a faster movement. Identification of the 'correct' movement model that would consistently provide the best fit for movement data is challenging and has become a highly controversial issue. In this paper, we show that this controversy may be superficial rather than real if the issue is considered in the context of trapping or, more generally, survival probabilities. In particular, we show that almost identical trap counts are reproduced for inherently different movement models (such as the Brownian motion and the Lévy walk) under certain conditions of equivalence. This apparently suggests that the whole 'Levy or diffusion' debate is rather senseless unless it is placed into a specific ecological context, e.g., pest monitoring programs
    corecore