4 research outputs found

    Assessment of Global Longitudinal and Circumferential Strain Using Computed Tomography Feature Tracking: Intra-Individual Comparison with CMR Feature Tracking and Myocardial Tagging in Patients with Severe Aortic Stenosis

    Get PDF
    In this study, we used a single commercially available software solution to assess global longitudinal (GLS) and global circumferential strain (GCS) using cardiac computed tomography (CT) and cardiac magnetic resonance (CMR) feature tracking (FT). We compared agreement and reproducibility between these two methods and the reference standard, CMR tagging (TAG). Twenty-seven patients with severe aortic stenosis underwent CMR and cardiac CT examinations. FT analysis was performed using Medis suite version 3.0 (Leiden, The Netherlands) software. Segment (Medviso) software was used for GCS assessment from tagged images. There was a trend towards the underestimation of GLS by CT-FT when compared to CMR-FT (19.4 +/- 5.04 vs. 22.40 +/- 5.69, respectively; p = 0.065). GCS values between TAG, CT-FT, and CMR-FT were similar (p = 0.233). CMR-FT and CT-FT correlated closely for GLS (r = 0.686, p < 0.001) and GCS (r = 0.707, p < 0.001), while both of these methods correlated moderately with TAG for GCS (r = 0.479, p < 0.001 for CMR-FT vs. TAG; r = 0.548 for CT-FT vs. TAG). Intraobserver and interobserver agreement was excellent in all techniques. Our findings show that, in elderly patients with severe aortic stenosis (AS), the FT algorithm performs equally well in CMR and cardiac CT datasets for the assessment of GLS and GCS, both in terms of reproducibility and agreement with the gold standard, TAG

    Comparison of feature tracking, fast-SENC, and myocardial tagging for global and segmental left ventricular strain

    No full text
    AIMS: A multitude of cardiac magnetic resonance (CMR) techniques are used for myocardial strain assessment; however, studies comparing them are limited. We sought to compare global longitudinal (GLS), circumferential (GCS), segmental longitudinal (SLS), and segmental circumferential (SCS) strain values, as well as reproducibility between CMR feature tracking (FT), tagging (TAG), and fast-strain-encoded (fast-SENC) CMR techniques. METHODS AND RESULTS: Eighteen subjects (11 healthy volunteers and seven patients with heart failure) underwent two CMR scans (1.5T, Philips) with identical parameters. Global and segmental strain values were measured using FT (Medis), TAG (Medviso), and fast-SENC (Myocardial Solutions). Friedman's test, linear regression, Pearson's correlation coefficient, and Bland-Altman analyses were used to assess differences and correlation in measured GLS and GCS between the techniques. Two-way mixed intra-class correlation coefficient (ICC), coefficient of variance (COV), and Bland-Altman analysis were used for reproducibility assessment. All techniques correlated closely for GLS (Pearson's r: 0.86-0.92) and GCS (Pearson's r: 0.85-0.94). Intra-observer and inter-observer reproducibility was excellent in all techniques for both GLS (ICC 0.92-0.99, CoV 2.6-10.1%) and GCS (ICC 0.89-0.99, CoV 4.3-10.1%). Inter-study reproducibility was similar for all techniques for GLS (ICC 0.91-0.96, CoV 9.1-10.8%) and GCS (ICC 0.95-0.97, CoV 7.6-10.4%). Combined segmental intra-observer reproducibility was good in all techniques for SLS (ICC 0.914-0.953, CoV 12.35-24.73%) and SCS (ICC 0.885-0.978, CoV 10.76-19.66%). Combined inter-study SLS reproducibility was the worst in FT (ICC 0.329, CoV 42.99%), while fast-SENC performed the best (ICC 0.844, CoV 21.92%). TAG had the best reproducibility for combined inter-study SCS (ICC 0.902, CoV 19.08%), while FT performed the worst (ICC 0.766, CoV 32.35%). Bland-Altman analysis revealed considerable inter-technique bia

    Noninvasive evaluation of pulmonary artery stiffness in heart failure patients via cardiovascular magnetic resonance

    No full text
    Abstract Heart failure (HF) presents manifestations in both cardiac and vascular abnormalities. Pulmonary hypertension (PH) is prevalent in up 50% of HF patients. While pulmonary arterial hypertension (PAH) is closely associated with pulmonary artery (PA) stiffness, the association of HF caused, post-capillary PH and PA stiffness is unknown. We aimed to assess and compare PA stiffness and blood flow hemodynamics noninvasively across HF entities and control subjects without HF using CMR. We analyzed data of a prospectively conducted study with 74 adults, including 55 patients with HF across the spectrum (20 HF with preserved ejection fraction [HFpEF], 18 HF with mildly-reduced ejection fraction [HFmrEF] and 17 HF with reduced ejection fraction [HFrEF]) as well as 19 control subjects without HF. PA stiffness was defined as reduced vascular compliance, indicated primarily by the relative area change (RAC), altered flow hemodynamics were detected by increased flow velocities, mainly by pulse wave velocity (PWV). Correlations between the variables were explored using correlation and linear regression analysis. PA stiffness was significantly increased in HF patients compared to controls (RAC 30.92 ± 8.47 vs. 50.08 ± 9.08%, p < 0.001). PA blood flow parameters were significantly altered in HF patients (PWV 3.03 ± 0.53 vs. 2.11 ± 0.48, p < 0.001). These results were consistent in all three HF groups (HFrEF, HFmrEF and HFpEF) compared to the control group. Furthermore, PA stiffness was associated with higher NT-proBNP levels and a reduced functional status. PA stiffness can be assessed non-invasively by CMR. PA stiffness is increased in HFrEF, HFmrEF and HFpEF patients when compared to control subjects. Trial registration The study was registered at the German Clinical Trials Register (DRKS, registration number: DRKS00015615)
    corecore