74 research outputs found

    Meta-analysis of the incidence and patterns of second neoplasms after photon craniospinal irradiation in children with medulloblastoma.

    Get PDF
    BACKGROUND: Second neoplasms (SNs) are a well-established long-term adverse effect of radiation therapy (RT), but there are limited data regarding their incidence and location relative to the radiation field, specific to medulloblastoma (MB) survivors after craniospinal irradiation (CSI). METHODS: A systematic literature review, per Preferred Reporting Items for Systematic Reviews and Meta-Analyses, identified six studies reporting the incidence and locations of SNs for 1,114 patients with MB, after CSI, with a median follow-up of ∼9 years (7.6-15.4 years). The study-specific cumulative incidence (CI) of SNs, second benign neoplasms (SBNs), and second malignant neoplasms (SMNs) were standardized to a 10-year time frame. Meta-analysis was performed using random effects models, with pooled data from selected studies and an institutional cohort of 55 patients. RESULTS: The 10-year CI was 6.1% for all SNs (excluding skin cancer and leukemia), 3.1% for SBNs, and 3.7% for SMNs. Fifty-eight percent of SNs were malignant; high-grade glioma was the most common SMN (15/33; 45%) and meningioma, the most common SBN (16/24; 67%). Forty percent of SNs occurred outside the target central nervous system (CNS) field, with a majority in areas of exit RT dose. Seventy-four percent of extra-CNS tumors (17/23) were malignant, most commonly thyroid carcinoma (7/17; 41%) and bone and soft-tissue tumors (6/17, 35%). CONCLUSIONS: Survivors of MB are at risk of SNs both within and outside the CNS. A significant proportion of SNs occur in areas of exit RT dose. Studies are needed to determine whether the use of proton therapy, which has no exit RT dose, is associated with a lower incidence of SNs

    Presentation, Prognostic Factors and Patterns of Failure in Adult Rhabdomyosarcoma

    Get PDF
    Purpose: The purpose of our study is to retrospectively review our institutional experience with adult rhabdomyosarcoma (RMS) to determine presentation, prognostic factors and patterns of failure in this disease

    Resection cavity auto-contouring for patients with pediatric medulloblastoma using only CT information

    Get PDF
    PURPOSE: Target delineation for radiation therapy is a time-consuming and complex task. Autocontouring gross tumor volumes (GTVs) has been shown to increase efficiency. However, there is limited literature on post-operative target delineation, particularly for CT-based studies. To this end, we trained a CT-based autocontouring model to contour the post-operative GTV of pediatric patients with medulloblastoma. METHODS: One hundred four retrospective pediatric CT scans were used to train a GTV auto-contouring model. Eighty patients were then preselected for contour visibility, continuity, and location to train an additional model. Each GTV was manually annotated with a visibility score based on the number of slices with a visible GTV (1 = \u3c 25%, 2 = 25-50%, 3 = \u3e 50-75%, and 4 = \u3e 75-100%). Contrast and the contrast-to-noise ratio (CNR) were calculated for the GTV contour with respect to a cropped background image. Both models were tested on the original and pre-selected testing sets. The resulting surface and overlap metrics were calculated comparing the clinical and autocontoured GTVs and the corresponding clinical target volumes (CTVs). RESULTS: Eighty patients were pre-selected to have a continuous GTV within the posterior fossa. Of these, 7, 41, 21, and 11 were visibly scored as 4, 3, 2, and 1, respectively. The contrast and CNR removed an additional 11 and 20 patients from the dataset, respectively. The Dice similarity coefficients (DSC) were 0.61 ± 0.29 and 0.67 ± 0.22 on the models without pre-selected training data and 0.55 ± 13.01 and 0.83 ± 0.17 on the models with pre-selected data, respectively. The DSC on the CTV expansions were 0.90 ± 0.13. CONCLUSION: We successfully automatically contoured continuous GTVs within the posterior fossa on scans that had contrast \u3e ± 10 HU. CT-Based auto-contouring algorithms have potential to positively impact centers with limited MRI access

    Proton Beam Therapy Versus Conformal Photon Radiation Therapy for Childhood Craniopharyngioma: Multi-institutional Analysis of Outcomes, Cyst Dynamics, and Toxicity

    Get PDF
    PurposeWe compared proton beam therapy (PBT) with intensity modulated radiation therapy (IMRT) for pediatric craniopharyngioma in terms of disease control, cyst dynamics, and toxicity.Methods and MaterialsWe reviewed records from 52 children treated with PBT (n=21) or IMRT (n=31) at 2 institutions from 1996-2012. Endpoints were overall survival (OS), disease control, cyst dynamics, and toxicity.ResultsAt 59.6 months' median follow-up (PBT 33 mo vs IMRT 106 mo; P<.001), the 3-year outcomes were 96% for OS, 95% for nodular failure-free survival and 76% for cystic failure-free survival. Neither OS nor disease control differed between treatment groups (OS P=.742; nodular failure-free survival P=.546; cystic failure-free survival P=.994). During therapy, 40% of patients had cyst growth (20% requiring intervention); immediately after therapy, 17 patients (33%) had cyst growth (transient in 14), more commonly in the IMRT group (42% vs 19% PBT; P=.082); and 27% experienced late cyst growth (32% IMRT, 19% PBT; P=.353), with intervention required in 40%. Toxicity did not differ between groups. On multivariate analysis, cyst growth was related to visual and hypothalamic toxicity (P=.009 and .04, respectively). Patients given radiation as salvage therapy (for recurrence) rather than adjuvant therapy had higher rates of visual and endocrine (P=.017 and .024, respectively) dysfunction.ConclusionsSurvival and disease-control outcomes were equivalent for PBT and IMRT. Cyst growth is common, unpredictable, and should be followed during and after therapy, because it contributes to late toxicity. Delaying radiation therapy until recurrence may result in worse visual and endocrine function

    Superior Verbal Learning and Memory in Pediatric Brain Tumor Survivors Treated With Proton Versus Photon Radiotherapy

    Get PDF
    OBJECTIVE: Radiotherapy for pediatric brain tumor has been associated with late cognitive effects. Compared to conventional photon radiotherapy (XRT), proton radiotherapy (PRT) delivers lower doses of radiation to healthy brain tissue. PRT has been associated with improved long-term cognitive outcomes compared to XRT. However, there is limited research comparing the effects of XRT and PRT on verbal memory. METHOD: Survivors of pediatric brain tumor treated with either XRT ( RESULTS: Overall, patients receiving PRT demonstrated superior verbal learning and recall compared to those treated with XRT. Encoding and retrieval deficits were more common in the XRT group than the PRT group, with encoding problems being most prevalent. The PRT group was more likely to engage in semantic clustering strategies, which predicted better encoding and retrieval. Encoding ability was associated with higher intellectual and adaptive functioning, and fewer parent-reported concerns about day-to-day attention and cognitive regulation. CONCLUSION: Results suggest that PRT is associated with verbal memory sparing, driven by effective encoding and use of learning strategies. Future work may help to clarify underlying neural mechanisms associated with verbal memory decline, which will better inform treatment approaches

    Validation of an Automated Contouring and Treatment Planning Tool for Pediatric Craniospinal Radiation Therapy

    Get PDF
    PURPOSE: Treatment planning for craniospinal irradiation (CSI) is complex and time-consuming, especially for resource-constrained centers. To alleviate demanding workflows, we successfully automated the pediatric CSI planning pipeline in previous work. In this work, we validated our CSI autosegmentation and autoplanning tool on a large dataset from St. Jude Children\u27s Research Hospital. METHODS: Sixty-three CSI patient CT scans were involved in the study. Pre-planning scripts were used to automatically verify anatomical compatibility with the autoplanning tool. The autoplanning pipeline generated 15 contours and a composite CSI treatment plan for each of the compatible test patients (n=51). Plan quality was evaluated quantitatively with target coverage and dose to normal tissue metrics and qualitatively with physician review, using a 5-point Likert scale. Three pediatric radiation oncologists from 3 institutions reviewed and scored 15 contours and a corresponding composite CSI plan for the final 51 test patients. One patient was scored by 3 physicians, resulting in 53 plans scored total. RESULTS: The algorithm automatically detected 12 incompatible patients due to insufficient junction spacing or head tilt and removed them from the study. Of the 795 autosegmented contours reviewed, 97% were scored as clinically acceptable, with 92% requiring no edits. Of the 53 plans scored, all 51 brain dose distributions were scored as clinically acceptable. For the spine dose distributions, 92%, 100%, and 68% of single, extended, and multiple-field cases, respectively, were scored as clinically acceptable. In all cases (major or minor edits), the physicians noted that they would rather edit the autoplan than create a new plan. CONCLUSIONS: We successfully validated an autoplanning pipeline on 51 patients from another institution, indicating that our algorithm is robust in its adjustment to differing patient populations. We automatically generated 15 contours and a comprehensive CSI treatment plan for each patient without physician intervention, indicating the potential for increased treatment planning efficiency and global access to high-quality radiation therapy

    Outcomes and Pattern of Care for Spinal Myxopapillary Ependymoma in the Modern Era-A Population-Based Observational Study

    Get PDF
    (1) Background: Myxopapillary ependymoma (MPE) is a rare tumor of the spine, typically slow-growing and low-grade. Optimal management strategies remain unclear due to limited evidence given the low incidence of the disease. (2) Methods: We analyzed data from 1197 patients with spinal MPE from the Surveillance, Epidemiology, and End Results (SEER) database (2000-2020). Patient demographics, treatment modalities, and survival outcomes were examined using statistical analyses. (3) Results: Most patients were White (89.9%) with a median age at diagnosis of 42 years. Surgical resection was performed in 95% of cases. The estimated 10-year overall survival was 91.4%. Younger age (hazard ratio (HR) = 1.09, p \u3c 0.001) and receipt of surgery (HR = 0.43, p = 0.007) were associated with improved survival. Surprisingly, male sex was associated with worse survival (HR = 1.86, p = 0.008) and a younger age at diagnosis compared to females. (4) Conclusions: This study, the largest of its kind, underscores the importance of surgical resection in managing spinal MPE. The unexpected association between male sex and worse survival warrants further investigation into potential sex-specific pathophysiological factors influencing prognosis. Despite limitations, our findings contribute valuable insights for guiding clinical management strategies for spinal MPE

    Cognitive Sparing in Proton versus Photon Radiotherapy for Pediatric Brain Tumor Is Associated with White Matter Integrity: An Exploratory Study

    Get PDF
    Radiotherapy for pediatric brain tumors is associated with reduced white matter structural integrity and neurocognitive decline. Superior cognitive outcomes have been reported following proton radiotherapy (PRT) compared to photon radiotherapy (XRT), presumably due to improved sparing of normal brain tissue. This exploratory study examined the relationship between white matter change and late cognitive effects in pediatric brain tumor survivors treated with XRT versus PRT. Pediatric brain tumor survivors treated with XRT

    Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation.

    Get PDF
    Eosinophils are predominantly known for their contribution to allergy. Here, we have examined the function and regulation of gastrointestinal eosinophils in the steady-state and during infection with or We find that eosinophils are recruited to sites of infection, directly encounter live bacteria, and activate a signature transcriptional program; this applies also to human gastrointestinal eosinophils in humanized mice. The genetic or anti-IL-5-mediated depletion of eosinophils results in improved control of the infection, increased inflammation, and more pronounced Th1 responses. Eosinophils control Th1 responses via the IFN-γ-dependent up-regulation of PD-L1. Furthermore, we find that the conditional loss of IFN-γR in eosinophils phenocopies the effects of eosinophil depletion. Eosinophils further possess bactericidal properties that require their degranulation and the deployment of extracellular traps. Our results highlight two novel functions of this elusive cell type and link it to gastrointestinal homeostasis and anti-bacterial defense
    corecore