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Purpose: Treatment planning for craniospinal irradiation (CSI) is complex and

time-consuming, especially for resource-constrained centers. To alleviate

demanding workflows, we successfully automated the pediatric CSI planning

pipeline in previous work. In this work, we validated our CSI autosegmentation

and autoplanning tool on a large dataset from St. Jude Children’s Research

Hospital.

Methods: Sixty-three CSI patient CT scans were involved in the study. Pre-

planning scripts were used to automatically verify anatomical compatibility with

the autoplanning tool. The autoplanning pipeline generated 15 contours and a

composite CSI treatment plan for each of the compatible test patients (n=51).

Plan quality was evaluated quantitatively with target coverage and dose to

normal tissue metrics and qualitatively with physician review, using a 5-point

Likert scale. Three pediatric radiation oncologists from 3 institutions reviewed

and scored 15 contours and a corresponding composite CSI plan for the final

51 test patients. One patient was scored by 3 physicians, resulting in 53 plans

scored total.

Results: The algorithm automatically detected 12 incompatible patients due to

insufficient junction spacing or head tilt and removed them from the study. Of

the 795 autosegmented contours reviewed, 97% were scored as clinically

acceptable, with 92% requiring no edits. Of the 53 plans scored, all 51 brain

dose distributions were scored as clinically acceptable. For the spine dose

distributions, 92%, 100%, and 68% of single, extended, and multiple-field cases,
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respectively, were scored as clinically acceptable. In all cases (major or minor

edits), the physicians noted that they would rather edit the autoplan than create a

new plan.

Conclusions: We successfully validated an autoplanning pipeline on 51 patients

from another institution, indicating that our algorithm is robust in its adjustment

to differing patient populations. We automatically generated 15 contours and a

comprehensive CSI treatment plan for each patient without physician

intervention, indicating the potential for increased treatment planning

efficiency and global access to high-quality radiation therapy.
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Introduction

Each year, 300,000 children are diagnosed with cancer

worldwide. Of these, 90% live in low- and middle-income

countries (LMICs), where access to proper care may be limited by

available resources (1). Globally, the 5-year survival rate for patients

with pediatric cancer has increased to over 80% in high-income

countries (HIC); however, this trend has not been mirrored in

LMICs, where average survival rates remain as low as 20% in

some countries (2). Recognizing this issue, the World Health

Organization launched the Global Initiative for Childhood Cancer

(GICC) program in 2018 aiming to increase global survival from

pediatric cancer to 60% (3). Radiation therapy is complex and time-

consuming to plan and deliver, yet it plays a critical role in

managing cancer in more than 50% of pediatric patients in

LMICs, and its use is expected to rise to 78% over the next 10

years (4).

Pediatric brain and CNS tumors constitute the leading cause of

deaths associated with pediatric cancer world-wide (5), but even

more so in LMICs where access to diagnosis and treatment requires

availability of technical and human resources (6). Medulloblastoma

is the most common malignant brain tumor in children accounting

for 20-25% of pediatric malignancies in HICs with large variations

in incidence in LMICs. Patients with this diagnosis (as well as some

other pediatric brain tumors) require craniospinal radiotherapy,

one of the most technically demanding techniques in a radiotherapy

center (7, 8).

Limited personnel create demanding workflows. For example,

medical physicists dedicate up to 50% of their time to generating

radiation therapy treatment plans (9). To alleviate demanding

workflows and increase global access to high-quality radiation

therapy, artificial intelligence has been introduced to automate

various aspects of the radiation therapy treatment planning

process. The Radiation Planning Assistant (RPA) planning team

has developed algorithms to automate contouring, treatment

planning, and quality assurance for adult disease sites, including

the cervix, chest wall, spine, head and neck, and whole brain (10–

15). Court et al. recently summarized how the RPA was designed

alongside leaders in resource-constrained countries to address the

global expertise gap in radiation oncology (16). In short, clinicians

import a patient CT scan with a planning prescription into the RPA

webpage. The web-based servers of the RPA then automatically

generate contours and a corresponding treatment plan using

internal algorithms. The contour and plan files are then sent back

to the user for download. The RPA was developed with clinical

acceptability and safety/risk in mind to ensure successful

deployment, and increase global access to high-quality

radiation therapy.

Recently, as part of the RPA project, Hernandez et al.

introduced artificial intelligence into pediatric radiation oncology

to facilitate autosegmentation and planning for craniospinal

radiation therapy for pediatric patients with medulloblastoma

(17). In addition, Hernandez et al. investigated automatically

contouring postoperative GTV volumes using a pediatric dataset

(18). Both studies were exclusively trained, validated, and tested on

an internal pediatric dataset.

The performance of deep learning models has been shown to

decrease when tested on patient populations from different

hospitals often due to heterogeneity in medical imaging

techniques (19). In addition, models trained only on a single

dataset may be susceptible to overfitting, which may further limit

the generalizability of the model on different patient populations

(20). Chen et al. reported that one of the biggest challenges of

incorporating artificial intelligence–based tools into radiation

oncology is the generalizability of deep learning models (21). In

2021, the FDA recognized that artificial intelligence may be biased

towards the dataset it is tested on. In outlining strategies to mitigate

bias in algorithm development, it was highlighted that the

algorithms should be tested on diverse patient cohorts to test

generalizability (22).

To evaluate the generalizability of our algorithms, we tested our

CSI autocontouring and autoplanning tool developed at our

institution, on a large dataset from another institution. We

recruited three pediatric radiation oncologists from three different

institutions to comprehensively evaluate the performance of the

autocontouring and autoplanning tool. Automating the contouring
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and planning workflow for pediatric CSI has the potential to

increase access to high-quality radiation therapy, as time saved

in treatment planning may be allocated to other clinically

necessary tasks.

Methods

We tested the CSI autocontouring tool on a dataset from St.

Jude Children’s Research Hospital, comprising of 63 full-body CSI

CT scans. This study was approved by our institutional review

board. The dataset was curated such that each patient had been

previously treated with photons in the head-first-supine position.

Of the 63 scans, 30 had been performed on Siemens machines and

33 had been performed on Philips machines. The median (range)

number of slices, slice thicknesses, and tube voltage peaks were 495

(225–780), 1.5 (1–3) mm, and 120 (120–120) kVp, respectively.

After evaluating the imaging parameters, all CT images were

imported into the Raystation treatment planning system version

11B (Raysearch Laboratories, Stockholm, Sweden) (23).

Autocontouring

Two deep-learning based autosegmentation pipelines were

employed to generate the normal tissue contours on the 63 CT

scans outside of the treatment planning system. Deep learning uses

a series of multi-layer neural networks to learn image features of

large training datasets (image and contour pairs) to then

automatically segment contours on independent test datasets

(images only). To generate the contours in this study, first, a

previously validated, adult head and neck autocontouring model

was run to generate the brain, brainstem, eye, lens, and cochlea

contours (24). Next, a previously validated, pediatric-specific

autocontouring model was used to generate the cribriform plate,

lacrimal gland, pituitary gland, thyroid, heart, lung, shoulder,

mandible, spinal canal, vertebral column, and kidney contours

(17). The inputs of both algorithms are a CT scan, and the

outputs are a set of autocontours which may then be imported

into the treatment planning system for planning.

Autoplanning

Hernandez et al. previously automated the treatment planning

process for 3D-conformal pediatric craniospinal radiation therapy

(17). The algorithm was written in Raystation using the python-

based API and did not use any auto-planning features native to the

TPS. In summary (Figure 1), autocontours are first generated using

previously-trained deep learning models and then they are

imported into the treatment planning system. The autoplanning

tool then generates 2 lateral brain fields (gantry at 90 and 270

degrees) matched to a single poster-anterior (PA) spine field (gantry

at 180 degrees), an extended spine field (120 cm SSD to couch top),

or 2 matched spine fields, depending on the patient’s spinal canal

length. The MLCs for the brain and spine field(s) conform to a 1 cm
uniform expansion of the brain autocontour and a 1 cm lateral

expansion of the spinal canal autocontour, respectively. A half-

FIGURE 1

Outline of craniospinal irradiation auto-planning workflow. Normal
structures and landmark structures are automatically contoured
using deep learning methods. The autocontours then guide an
autoplanning algorithm scripted in the treatment planning system.
Auto-contours are used to automatically set isocenters and define
target and prescription volumes. Fields are automatically generated
and conformed to the specified targets. The dose is prescribed, and
the dose to the spine field is optimized. The original plan is
feathered with 2 junction shifts. Finally, a composite plan is
generated. Figure reprinted from “Automating the treatment
planning process for 3D-conformal pediatric craniospinal irradiation
therapy,” by Hernandez et al., 2023, Pediatric Blood & Cancer,
Volume 70(3), e30164. Copyright 2023 by John Wiley and Sons.
Reprinted with permission.
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beam block is implemented on the brain field to avoid the need for

couch rotations. Spine subfields are then added and iteratively

weighted to optimize the spine dose distribution. Finally,

feathering is implemented at each match line to yield a composite

treatment plan. All beam energies are set to 6 MV. The prescription

is set to deliver 23.4 Gy in 13 fractions, normalized to give 95% of

the prescribed dose to 100% of the brain volume and 95% of the

spinal canal volume using a 5, 5, 3 fractionation scheme. For

additional details on the contouring and planning algorithms, we

refer the user to our previous work (17).

Prior to generating a treatment plan, the CSI autoplanning

algorithm automatically performs a series of checks to ensure that

the patient’s anatomy is compatible with the algorithm design. First,

the algorithm automatically measures the patients’ spinal canal and

determines whether to implement a single, extended, or multiple

spine field configuration. In addition, the algorithm quantifies the

amount of space available for junction shifts and decides to

implement either 1- or 0.5-cm junction spacing. The algorithm

will flag the user if there is <1 cm of space between the mandible and

shoulders available for feathering. These patients were omitted from

final testing. Finally, the algorithm automatically checks that the

patient’s anatomy will be compatible with a half-beam block on the

brain field by measuring the distance between the most superior

slice of the brain contour and the most inferior slice of the mandible

contour. A patient with a head tilt would have a higher mandible

contour, which decreases the distance between the mandible and

the top of the brain relative to that of a patient who is looking

straight ahead. Patients with a measured brain-to-mandible

distance larger than 20 cm were removed from the final testing set.

After removing the incompatible patients from the final testing

set, we ran the autocontouring and autoplanning pipeline to

generate CSI treatment plans. Plan quality was evaluated

quantitatively with target coverage and dose to normal tissue

metrics and qualitatively with physician review.

Quantitative plan evaluation

To quantitatively evaluate the quality of the plans, dose metrics

were analyzed across the final test set of patients. Target coverage

was quantified using V95% of the prescription dose (23.4 Gy)

evaluated for the brain, spinal canal, and cribriform plate. Normal

tissue dose was also quantified using the maximum dose to the

brain, spinal canal, brainstem, cochlea, eye, lens, and optic nerve

autocontours. In addition, the mean dose was reported for the

cochlea, heart, kidney, lacrimal gland, lung, pituitary gland, and

thyroid autocontours.

Qualitative plan evaluation

Physician review was used to evaluate the quality of the final

autocontours and autoplans for each of the patients in the final

testing cohort. Three pediatric radiation oncologists from 3

institutions (in the US and South Africa) reviewed the final

test set. One patient was reviewed by all 3 physicians, resulting in

a total of 53 plans for review. Each physician reviewed and

scored each autocontour using a 5-point Likert scale detailed in

Table 1 (25). Using the same scale, the physicians reviewed the

autoplan of each patient and assigned a clinical acceptability

score to the brain and spine dose distributions individually.

Autocontours and autoplans scored ≥3 was considered clinically

acceptable. For plans that were scored as a 2, we also asked the

physician if they would prefer to create their own plan from

scratch or edit the plan we presented, as the original Likert scale

did not have a metric for plans that required major edits but were

still clinically useful.

Results

81% (51/63) of patients met the autoplanning pre-processing

requirements. Four patients were automatically removed for having

less than 1 cm available to feather junctions and 8 patients were

removed for not being compatible with a half-beam block on the

brain field. Each flagged case was manually reviewed to verify that it

was not compatible with the planning algorithm. Figure 2 shows the

variation in junction spacing and required spine field length

measured across the dataset. A team of 3 pediatric radiation

oncologists from different institutions reviewed and scored the

resulting 51 autocontours and autoplans. One patient’s case was

reviewed and scored by all 3 physicians (total of 53 plans scored).

Physician 1 reviewed 16 plans, physician 2 reviewed 19, and

physician 3 reviewed 18.

TABLE 1 5-Point Likert scale used to evaluate autocontour and autoplan quality (25).

Score Acceptability Description

5 Acceptable, use as-is Clinically acceptable, could be used for treatment without any changes

4 Acceptable, minor and stylistic edits Stylistic differences, but not clinically important

3
Acceptable, minor edits that are clinically

necessary
Clinically important edits for which it is more efficient to edit the autocontours or autoplans than to start from

scratch

2 Unacceptable, major edits
Edits that are required to ensure appropriate treatment and are significant enough that the user would prefer

to start from scratch

1 Unacceptable, unusable
Autocontours or autoplans that are so bad that they are unusable (i.e. wrong body area or outside the confines

of the body)
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Autocontouring

Fifteen autocontours from 51 patients were reviewed by 3

pediatric radiation oncologists, including the eyes, lacrimal

glands, lenses, cribriform plate, optic nerves, pituitary,

cochlea, brainstem, mandible, brain, thyroid, lungs, heart,

kidneys, and spinal canal. Physicians 1, 2, and 3 reviewed and

scored 240, 285, and 270 autocontours, respectively. The scores

assigned to each contour are summarized in Figure 3. Overall,

the autocontouring model’s performance was robust across all

spine field configurations. Across all physicians, 97% (775 of

795) of autocontours were scored as clinically acceptable, with

92% (733 of 795) of autocontours requiring no edits. Physicians

1, 2, and 3 scored 98%, 95%, and 85% of autocontours,

respectively, as requiring no edits (score ≥4).

We evaluated the scores of the target autocontours (brain,

cribriform plate, and spinal canal) and found that 85% (45 of 53)

of the brain autocontours required no edits and the remaining 15%

(8 of 53) required minor, clinically necessary edits because the

temporal lobes and cribriform plate had been under contoured. All

51 cribriform plate contours were scored as clinically acceptable,

and only 6% (3 of 53) required edits. Physicians 1 and 2 scored

100% of the reviewed spinal canal contours as clinically acceptable

(score ≥3). Physician 3 scored 33% (6 of 18) of the spinal canal

autocontours as clinically unacceptable (major edits required)

because the canal contour was under contoured inferiorly and did

not include the distal spinal nerve roots prior to exit from the

ventral sacral foramina.

Normal tissue autosegmentation performed well for all

structures but the kidneys due to variation in simulation planning

technique. We found that 23% (12 of 53) of the kidney contours

were scored as clinically unacceptable. The performance of the

kidney autocontouring model was negatively affected by CT scans

with contrast administered at the time of simulation. Because the

autocontouring model was originally trained on non-contrast CT

scans, the model was able to localize the kidneys but failed to

accurately contour their shape, which resulted in major edits. The

thyroid autocontouring model experienced a similar issue for one

patient, when the model mistakenly assigned high-contrast

vasculature near the thyroid as thyroid itself, which resulted in a

minor, clinically necessary edit.

Quantitative plan evaluation

Of the 51 patients tested, 23, 3, and 25 required single-,

extended-, and multiple-field configurations, respectively

(Figure 2). The V95% achieved for the target structures across the

single, extended, and multiple field configurations are summarized

in Figure 4. The whole brain plan was normalized such that 100% of

the brain autocontour received the prescribed dose, which was

achieved across all three spine field configurations tested. The

average V95 ± 1s% for the spinal canal for single, extended, and

multiple fields were 99.3 ± 0.04%, 99.3 ± 0.01%, and 98.6 ± 0.01%,

respectively. Finally, the average V95% for the cribriform plate were

96.4 ± 0.01%, 99.5 ± 0.0002%, and 99.5 ± 0.01%, respectively.

The extended- and single-field configurations resulted in

better target coverage to the spinal canal than did the multiple-

field configuration. Finally, the extended- and multiple-field

configurations achieved higher overall coverage to the cribriform

plate than did the single-field configuration.

The average maximum doses (Gy) to the brain, spinal canal,

and brainstem autocontours across all three spine field

configurations were 25.5 ± 0.33 Gy (109% of Rx), 26.4 ± 0.74 Gy

(113% of Rx), and 24.7 ± 0.33 Gy (106% of Rx), respectively. The

dose to the spinal canal was higher for multiple-field plans (27.3 ±

0.37 Gy) than for single- and extended-field plans (25.6 ± 0.61 Gy

and 25.5 ± 0.19 Gy, respectively). The average maximum doses (Gy)

delivered to the cochlea, eye, lens, and nerve autocontours were 24.7

± 0.40 Gy, 14.15 ± 4.03 Gy, and 25.2 ± 0.50 Gy, respectively

(Figure 5). The mean doses [Gy] to the cochlea (L/R avg.), heart,

kidney, lacrimal gland, lung, pituitary, and thyroid autocontours

across all three spine field configurations were 24.0 ± 0.30 Gy, 8.76 ±

1.05 Gy, 1.39 ± 0.27 Gy, 23.7 ± 0.44 Gy, 2.06 ± 0.39 Gy, 22.1 ± 2.30

Gy, and 17.9 ± 1.00 Gy, respectively.

Overall, all spine field configurations resulted in consistent

maximum and mean doses to the normal tissues. A dose-volume

histogram for the target and normal tissue structures averaged

across all spine configurations is summarized in Figure 6.

Qualitative plan evaluation

A total of 51 patients were reviewed and scored for the quality of

the composite CSI autoplan. One patient’s case was reviewed by all

three physicians, resulting in a total of 53 plans. Physicians 1, 2, and

3 reviewed 16, 19, and 18 plans, respectively. For the single-field

configuration, 6, 9, and 10 cases were reviewed by physicians 1, 2,

and 3, respectively. For the extended-field configuration, 1 and 2

cases were reviewed by physicians 1 and 2, respectively. For the

multiple-field configuration, 9, 8, and 8 cases were reviewed by

FIGURE 2

Distribution of available junction spacing and required spine field
configurations for 63 patients. The green and yellow lines
correspond to having enough feathering space for a 1-cm junction.
The dotted red line represents the cut-off for a 0.5-cm junction.
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physicians 1, 2, and 3, respectively. The scores of the autoplans from

each physician are detailed in Figure 7. Factors contributing to the

scores included the accuracy of the match lines; the dose

distribution within the junctions; the target coverage to the brain,

cribriform plate, and spinal canal; and the dose to normal tissues,

such as the kidneys.

Overall, 100% of the brain dose distributions were scored as

clinically acceptable (Likert score ≥3). Of these, 19, 13, and 21 were

scored as 5, 4, and 3, respectively. For the spine dose distribution, 92%

(23 of 25) of single-, 100% (3 of 3) of extended-, and 68% (17 of 25) of

multiple-field cases were scored as clinically acceptable. Most plans

required no edits or minor edits. Eight of the 25 multiple-field spine

dose distributions were scored as clinically unacceptable, as they

required major edits. However, all physicians reported that they

would rather edit the autoplan rather than create a new one (Figure 7).

One plan was seen by all three physicians. Physicians 1, 2, and 3

assigned scores of 5, 4, and 3 to the brain dose distributions of the

plan and 3, 4, and 4 to the spine dose distributions, demonstrating

that while all physicians agreed that the plan was clinically

acceptable, each had their own preference as to how they would

edit the plan. Across all cases reviewed, all physicians agreed that

the coverage to the cribriform plate could be improved on most of

the plans, at the expense of an increased lens dose. The physicians

had differing preferences on the tradeoff between spinal field

coverage and hotspots.

Overall, the autoplanning algorithmworked well. The tool was able

to generate composite treatment plans for 51 patients in three minutes

per single-field case and eight minutes per multiple field cases. The

additional time formultiple field cases was due to running optimization

FIGURE 4

V95 (%) of Rx dose (23.4 Gy) across the single (blue), extended
(orange), and multiple (green) spine field configurations. The brain
field prescription was set to cover 100% of the brain with 95% of the
prescription dose, which was achieved.

FIGURE 3

Summary of physician review of autocontours. Physicians 1, 2, and 3 reviewed and scored 240, 285, and 270 auto-contours, respectively. A score ≥3
(blue) was considered clinically acceptable.
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on the upper and lower spinal fields sequentially. It is important to note

that the plan generation process does not require user intervention,

yielding the potential for high clinical impact, particularly in resource-

constrained centers.

Discussion

We validated the performance of an autocontouring and

autoplanning pipeline for craniospinal radiotherapy. The algorithms

successfully generated 15 autocontours and a comprehensive CSI

treatment plan for 51 patients across three spine field configurations.

The performance of both tools was comprehensively analyzed using

quantitative and qualitative metrics. The autocontouring model

successfully generated clinically acceptable normal tissue contours

and treatment plans, most of which required no or minor edits.

While we observed inter physician variability on spine field scoring,

all physicians commented that even if edits (major or minor) were

required, they still preferred to edit our autoplans rather than create

their own.

The autocontouring tool performed well for each of the 15

structures tested across 51 patients. Since the patients were

anonymized prior to testing, we could not directly quantify how

the models performed across different age groups. However, the

spinal canal length for the 51 patients ranged from 25 cm to 60 cm;

thus, we can infer that the model was robust to varying patient

anatomy. The autocontouring model also worked well across

varying image parameters. For example, the average slice

thickness of the scans used to train the autocontouring models

was 2.5 mm (1.25-2.5 mm range), and the average slice thickness of

the scans from the external dataset was 1.5 mm.

All physicians scored all the brain autocontours as clinically

acceptable. We found that the brain autocontouring model could be

improved to increase temporal lobe coverage and accommodate

patients with post-operative psudomeningoceles. Because the brain

autocontour was generated by an adult autocontouring model, it had

not been used on pediatric or postoperative cases before. While 2

physicians consistently scored the spinal canal autocontour as requiring

no or only minor stylistic edits, one physician noted that the model

consistently under contoured the nerve roots and scored the contours

accordingly. This physician commented that 5-10 slices of the canal

autocontour would require major edits but that it would still be more

efficient to edit the autocontour than to create a new contour.

The physicians scored the majority of the normal tissue

contours as requiring no or minor, stylistic edits, except for the

lung and kidney autocontours. The lung autocontouring model

consistently slightly under contoured the true lung volume, and the

kidney model failed to accurately contour the kidneys on patients

with contrast enhanced CT scans. Despite these errors, the

physicians noted that the quality of the lung and kidney contours

would not affect the final treatment plan.

Overall, the autoplanning tool performed well for the 51

patients tested across three spine field configurations. The scoring

for the brain dose distribution was consistent across the three spine

field configurations. The physicians noted that the brain dose

distributions could be improved by increasing the cribriform plate

coverage at the expense of increased lens dose, but this can be easily

achieved by editing the position of the two or three MLCs that are

shielding the lenses. Physicians noted that they would prefer to use

additional brain sub-fields to reduce the size of the 107% hotspot.

While our current CSI approach does not include sub-fields for the

brain fields, they could easily be added using a technique that has

been separately developed for whole brain radiation (15). Finally,

one physician noted that the MLCs could be opened around the

back of the skull to ensure that patients with pseudomeningoceles

would be treated properly, with no negative effect on the patient.

For the spine field configurations, we found that the single-

and extended-field configurations outperformed the multiple

configuration plans. Ultimately, the validation of the algorithm

proved that the multiple field configuration would need to be

improved and further tested prior to clinical implementation. For

many of the cases, the physicians were satisfied with the single-field

spine dose distributions. They noted that they would adjust the

weighting on the spine sub-fields to increase the spinal canal

coverage at the expense of increasing the hotspot size. For the

multiple-field cases, the match line between the upper and lower

spine fields was designed to be placed just anterior to the spinal

canal. This worked well for most patients; however, if a patient had

an unusually angled spine, the first match point would be in the

FIGURE 5

Maximum and mean doses averaged across 51 patients, expressed
as a percentage of the prescription dose. Error estimates are
standard deviations.

FIGURE 6

Dose-volume histogram summarizing dose delivered to the targets
(brain, spinal canal, and cribriform plate) and normal tissues
averaged across the 51 treatment plans tested. The solid lines
represent the mean dose-volume histogram values, and the shaded
portions represent one standard deviation in values across the three
spine field configurations tested.

Hernandez et al. 10.3389/fonc.2023.1221792

Frontiers in Oncology frontiersin.org07

https://doi.org/10.3389/fonc.2023.1221792
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


correct location and the match point for the latter 2 junctions would

start to shift into the canal. The original algorithm was designed to

add a single sub-field for single- and extended-field cases and 2 sub-

fields for the upper and lower spine fields, respectively, for multiple-

field cases. While this technique worked for most patients,

physicians noted that they would add additional sub-fields to the

multiple field plans to improve the plan quality. In addition, they

could adjust the spacing of the spine sub-fields to optimize the dose

distribution within the junction.

We identified limitations in our approach after testing it on patients

from another institution. First, we encountered variations in clinical

practice that the current algorithm was not designed to accommodate

(i.e. theadditionofsub-fields,patientswithrequiredbrainfields>20cm,or

different prioritization of target coverage vs. hotspots). Another limitation

was that it was not possible to validate our autocontours and autoplans

with the clinical plans as we only received the anonymized CT scans and

not the corresponding clinical contours and plans. In addition, the

planning technique described in this work is currently limited to a single

approach to CSI planning based on the recommendations from the SIOP

PODC. We opted for 3D-conformal CSI planning as 84% of resource-

constrained clinics report using this technique (6). Consequently, patients

must have the appropriate setup to be treated with our technique (i.e.

having the proper head tilt to achieve a half-beam brain block). Our pre-

planning algorithm successfully identified 12 patients that were

anatomically incompatible with the original planning design because of

insufficient spacing between the mandible and shoulders for junction

spacing, and/or insufficient head tilt to fit the brain into a half-beamblock

(20 cm). To expand the generalizability of our algorithm in the future, we

plan to provide user training to ensure appropriate anatomical setup and

accommodate couch kicks to treat larger brain fields.

Many institutions inHICshavemoved to advanced techniques such

as IMRT, VMAT or proton therapy for CSI. However, in LMICs,

3DCRT remains the prevalent technique, where this autoplanning tool

would have the potential to produce high quality plans within a very

short time. The autocontouring tool generates 15normal tissue contours

in 20minutes and the autoplanning tool generates a comprehensive CSI

plan in less than3minutes for the singlefieldconfigurationsand less than

8 minutes for the multiple field configuration. The process does not

require any user intervention and both algorithms could be further

optimized for time in the future. The efficiency of the tool has the

potential to reduce contouring time and alleviate treatment delayswhich

are known to be amajor factor impacting survival (26).Additionally, the

autocontouring tools are not specific to a single treatment technique or

pediatric disease site; thus, they could affect all pediatric patients

FIGURE 7

Scoring distribution for plans, reviewed by physicians 1, 2, and 3. Physician 1 reviewed 16 plans, physician 2 reviewed 19 plans, and physician 3 reviewed 18
plans. One single-field plan was reviewed by all 3 physicians. Individual scores were assigned to the brain and spine dose distributions. A score ≥3 (blue) was
considered clinically acceptable.
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requiring radiation therapy. Such a tool could standardize contouring,

helping to limit target deviations which impact treatment outcomes for

both well-resourced and resource-constrained clinics (7, 27, 28).

The autocontouring and autoplanning tools described in this

work will continue to go through rigorous testing before being

implemented into the Radiation Planning Assistant. The RPA

architecture has been proven to be robust to downtime, thus

providing a reliable service to resource-constrained clinics (29).

Finally, the RPA aims to provide autocontouring and autoplanning

tools at minimal (most likely zero) cost to resource-constrained

clinics in LMICs yielding potential for broad impact (16).

Conclusions

In conclusion, we successfully validated an autoplanning pipeline

developed at one institution using a large dataset provided by another

institution.We automatically generated 15 normal tissue contours and

a comprehensive CSI treatment plan for each patient without user

intervention. The results indicate that our algorithm is robust in its

adjustment to differing patient populations. Although the original

algorithm was designed and tested exclusively in pediatric patients

with medulloblastoma, we were able to successful generate treatment

plans on a dataset that included a variety of disease sites requiring CSI,

demonstrating that our algorithm is generalizable. Automating the

contouring and planning workflow for pediatric CSI has the potential

to increase treatment planning efficiency and global access to high-

quality radiation therapy.
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