4 research outputs found

    Discrepancies between two long-term dietary datasets in the United Kingdom

    Get PDF
    Background: Studying dietary trends can help monitor progress towards healthier and more sustainable diets but longitudinal data are often confounded by lack of standardized methods. Two main data sources are used for longitudinal analysis of diets: food balance sheets on food supply (FBS) and household budget surveys on food purchased (HBS). Methods: We used UK longitudinal dietary data on food supply, provided by the Food and Agriculture Organisation (FAO) (FAO-FBS, 1961-2018), and food purchases, provided by the Department for Environment, Food and Rural Affairs (Defra) (Defra-HBS, 1942-2018). We assessed how trends in dietary change per capita compared between FAO-FBS and Defra-HBS for calories, meat and fish, nuts and pulses, and dairy, and how disparities have changed over time. Results: Estimates made by FAO-FBS were significantly higher (p<0.001) than Defra-HBS for calorie intake and all food types, except nuts and pulses which were significantly lower (p<0.001). These differences are partly due to inclusion of retail waste in FAO-FBS data and under-reporting in Defra- HBS data. The disparities between the two datasets increased over time for calories, meat and dairy; did not change for fish; and decreased for nuts and pulses. Between 1961 and 2018, both FAO-FBS and Defra-FBS showed an increase in meat intake (+23.4% and +1.4%, respectively) and a decrease in fish (-7.1% and -3.2%, respectively). Temporal trends did not agree between the two datasets for dairy, calories, and nuts and pulses. Conclusions: Our finding raises questions over the robustness of both data sources for monitoring UK dietary change, especially when used for evidence-based decision making around health, climate change and sustainability

    Adherence to EAT-Lancet dietary recommendations for health and sustainability in the Gambia

    Get PDF
    Facilitating dietary change is pivotal to improving population health, increasing food system resilience, and minimizing adverse impacts on the environment, but assessment of the current ‘status-quo’ and identification of bottlenecks for improvement has been lacking to date. We assessed deviation of the Gambian diet from the EAT-Lancet guidelines for healthy and sustainable diets and identified leverage points to improve nutritional and planetary health. We analysed the 2015/16 Gambian Integrated Household Survey dataset comprising food consumption data from 12 713 households. Consumption of different food groups was compared against the EAT-Lancet reference diet targets to assess deviation from the guidelines. We computed a ‘sustainable and healthy diet index (SHDI)’ based on deviation of different food groups from the EAT-Lancet recommendations and modelled the socio-economic and geographic determinants of households that achieved higher scores on this index, using multivariable mixed effects regression. The average Gambian diet had very low adherence to EAT-Lancet recommendations. The diet was dominated by refined grains and added sugars which exceeded the recommendations. SHDI scores for nutritionally important food groups such as fruits, vegetables, nuts, dairy, poultry, and beef and lamb were low. Household characteristics associated with higher SHDI scores included: being a female-headed household, having a relatively small household size, having a schooled head of the household, having a high wealth index, and residing in an urban settlement. Furthermore, diets reported in the dry season and households with high crop production diversity showed increased adherence to the targets. While average Gambian diets include lower amounts of food groups with harmful environmental footprint, they are also inadequate in healthy food groups and are high in sugar. There are opportunities to improve diets without increasing their environmental footprint by focusing on the substitution of refined grains by wholegrains, reducing sugar and increasing fruit and vegetables consumption

    Drinking Water Salinity and Raised Blood Pressure: Evidence from a Cohort Study in Coastal Bangladesh.

    Get PDF
    BACKGROUND: Millions of coastal inhabitants in Southeast Asia have been experiencing increasing sodium concentrations in their drinking-water sources, likely partially due to climate change. High (dietary) sodium intake has convincingly been proven to increase risk of hypertension; it remains unknown, however, whether consumption of sodium in drinking water could have similar effects on health. OBJECTIVES: We present the results of a cohort study in which we assessed the effects of drinking-water sodium (DWS) on blood pressure (BP) in coastal populations in Bangladesh. METHODS: DWS, BP, and information on personal, lifestyle, and environmental factors were collected from 581 participants. We used generalized linear latent and mixed methods to model the effects of DWS on BP and assessed the associations between changes in DWS and BP when participants experienced changing sodium levels in water, switched from "conventional" ponds or tube wells to alternatives [managed aquifer recharge (MAR) and rainwater harvesting] that aimed to reduce sodium levels, or experienced a combination of these changes. RESULTS: DWS concentrations were highly associated with BP after adjustments for confounding factors. Furthermore, for each 100 mg/L reduction in sodium in drinking water, systolic/diastolic BP was lower on average by 0.95/0.57 mmHg, and odds of hypertension were lower by 14%. However, MAR did not consistently lower sodium levels. CONCLUSIONS: DWS is an important source of daily sodium intake in salinity-affected areas and is a risk factor for hypertension. Considering the likely increasing trend in coastal salinity, prompt action is required. Because MAR showed variable effects, alternative technologies for providing reliable, safe, low-sodium fresh water should be developed alongside improvements in MAR and evaluated in "real-life" salinity-affected settings. https://doi.org/10.1289/EHP659

    Effects of environmental change on agriculture, nutrition and health: A framework with a focus on fruits and vegetables [version 2; referees: 2 approved]

    Get PDF
    Environmental changes are likely to affect agricultural production over the next  decades. The interactions between environmental change, agricultural yields and crop quality, and the critical pathways to future diets and health outcomes are largely undefined. There are currently no quantitative models to test the impact of multiple environmental changes on nutrition and health outcomes. Using an interdisciplinary approach, we developed a framework to link the multiple interactions between environmental change, agricultural productivity and crop quality, population-level food availability, dietary intake and health outcomes, with a specific focus on fruits and vegetables. The main components of the framework consist of: i) socio-economic and societal factors, ii) environmental change stressors, iii) interventions and policies, iv) food system activities, v) food and nutrition security, and vi) health and well-being outcomes. The framework, based on currently available evidence, provides an overview of the multidimensional and complex interactions with feedback between environmental change, production of fruits and vegetables, diets and health, and forms the analytical basis for future modelling and scenario testing
    corecore