9 research outputs found

    Morpho-histological analysis of tomato (Solanum lycopersicum L.) plants after treatment with juglone

    Get PDF
    Juglone is a substance that limits plant growth and has a toxic effect on plant development. In this study, we analyzed the influence of juglone at two different concentrations (10-3 M and 10-4 M), which were applied to different parts of Solanum lycopersicum L. plants (root system, stem after decapitation, and surface of a younger leaf or after autografting) for a short period of time (7 days), on the morphology and histology of stems. At a lower concentration, juglone had positive effects on plant growth, which resulted in an increase in interfascicular cambial cell divisions, faster development of a continuous cambium layer along the stem circumference, and development of fibers. Additionally, under the influence of juglone, the number of developing leaves increased and adventitious roots developed. The results are discussed based on the current literature concerning the reaction of plants to juglone and to stress conditions

    Hormesis in Plants: The Role of Oxidative Stress, Auxins and Photosynthesis in Corn Treated with Cd or Pb

    Get PDF
    Hormesis, which describes the stimulatory effect of low doses of toxic substances on growth, is a well-known phenomenon in the plant and animal kingdoms. However, the mechanisms that are involved in this phenomenon are still poorly understood. We performed preliminary studies on corn coleoptile sections, which showed a positive correlation between the stimulation of growth by Cd or Pb and an increase in the auxin and H2O2 content in the coleoptile sections. Subsequently, we grew corn seedlings in hydroponic culture and tested a wide range of Cd or Pb concentrations in order to determine hormetic growth stimulation. In these seedlings the gas exchange and the chlorophyll a fluorescence, as well as the content of chlorophyll, flavonol, auxin and hydrogen peroxide, were measured. We found that during the hormetic stimulation of growth, the response of the photosynthetic apparatus to Cd and Pb differed significantly. While the application of Cd mostly caused a decrease in various photosynthetic parameters, the application of Pb stimulated some of them. Nevertheless, we discovered that the common features of the hormetic stimulation of shoot growth by heavy metals are an increase in the auxin and flavonol content and the maintenance of hydrogen peroxide at the same level as the control plants

    Research on Arabidopsis arenosa and Arabidopsis halleri growing at site highly contaminated with heavy metals in southern Poland

    Get PDF
    Przeprowadzone badania miały na celu porównanie akumulacji Cd i Zn oraz stanu fizjologicznego u A. arenosa i A. halleri rosnących na tym samym stanowisku zanieczyszczonym metalami ciężkimi. Uzyskane wyniki powinny pomóc w ustaleniu, czy A. arenosa może zostać sklasyfikowana jako hyperakumulator Cd i Zn

    Is the Age of Novel Ecosystem the Factor Driving Arbuscular Mycorrhizal Colonization in Poa compressa and Calamagrostis epigejos?

    Get PDF
    Some sites transformed or created by humans (novel ecosystem) are different both in vegetation and ecosystems establishment and development. The unknown habitat conditions and new species composition is resulting in new abiotic and biotic systems. To improve the understanding of the process governing the relationships between the environmental factors, plant species assemblages and their arbuscular mycorrhizal fungi (AMF) inoculation were studied in chronosequence on post-coal mine heaps. We hypothesized that AMF root colonization will be dependent on the age of heap and not on the dominant plant species (vegetation type). The high frequency of mycorrhizal colonization of roots (F%) of Poa compressa- and Calamagrostis epigejos-dominated vegetation type was stated. All mycorrhizal parameters were lower in C. epigejos roots when compared to P. compressa (ranging from 60% to 90%). The highest relative mycorrhizal intensity, M%, and mean abundance of arbuscula, A%, in the roots of both examined plants were recorded in vegetation patches dominated by Daucus carota. Positive and statistically significant correlations were found between F%, M%, and A%, and lack of correlation between the heaps’ age and mycorrhizal parameters, and statistically significant correlations between A% and potassium and magnesium content were revealed. The interspecific relations in the novel ecosystems become more complex along with the increase of diversity

    Influence of short-term macronutrient deprivation in maize on photosynthetic characteristics, transpiration and pigment content

    Get PDF
    The aim of the research was to compare the impact of short-term deprivation of selected macronutrients (Ca, K, Mg and P) on the photosynthetic characteristics, transpiration and pigment content in maize. The strongest inhibition of photosynthesis was caused by a deprivation of Mg, which was visible as a decrease in the photosynthetic and transpiration rates, stomatal conductance, photosystem II (PSII) performance, chlorophyll and flavonol content with a simultaneously increased content of anthocyanins. In the K-deprived plants, a decrease in the photosynthetic rate was observed. However, the transpiration rate and stomatal conductance did not differ significantly compared with the control. In the K-deprived plants, a decrease in chlorophyll and an increase in the anthocyanin content were also observed. We showed that Ca starvation resulted in a decrease in the photosynthetic and transpiration rates, stomatal conductance and PSII performance, while the pigment content was not significantly different compared with the control. In the case of P-deprived plants, we observed a decrease in the photosynthetic and transpiration rates. Interestingly, the inhibition of stomatal conductance was the strongest in the P-deprived plants compared with all of the investigated elements. However, the performance of PSII was not significantly affected by P starvation compared with the control. Our results present for the first time a comprehensive analysis of the effect of short-term macronutrient deprivation on photosynthesis and transpiration in maize plants

    How autochthonous microorganisms influence physiological status of Zea mays L. cultivated on heavy metal contaminated soils?

    Get PDF
    Funding information This work was supported by the Polish Ministry of Science and Higher Education (Institute for Ecology of Industrial Areas statutory funds).Peer reviewedPublisher PD

    Different strategies of Cd tolerance and accumulation in Arabidopsis halleri and Arabidopsis arenosa

    No full text
    Pseudometallophytes are commonly used to study the evolution of metal tolerance and accumulation traits in plants. Within the Arabidopsis genus, the adaptation of Arabidopsis halleri to metalliferous soils has been widely studied, which is not the case for the closely related species Arabidopsis arenosa. We performed an in-depth physiological comparison between the A. halleri and A. arenosa populations from the same polluted site, together with the geographically close non-metallicolous (NM) populations of both species. The ionomes, growth, photosynthetic parameters and pigment content were characterized in the plants that were growing on their native site and in a hydroponic culture under Cd treatments. In situ, the metallicolous (M) populations of both species hyperaccumulated Cd and Zn. The NM population of A. halleri hyperaccumulated Cd and Zn while the NM A. arenosa did not. In the hydroponic experiments, the NM populations of both species accumulated more Cd in their shoots than the M populations. Our research suggests that the two Arabidopsis species evolved different strategies of adaptation to extreme metallic environments that involve fine regulation of metal homeostasis, adjustment of the photosynthetic apparatus and accumulation of flavonols and anthocyanins.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Mycorrhizal colonization of Daucus carota and Calamagrostis epigejos growing on post-mining heap and its role in oxidative stress

    No full text
    tekst w j. pol. i ang.Celem pracy było zbadanie poziomu kolonizacji mikoryzowej korzeni Daucus carota i Calamagrostis epigejos, rosnących na zwale pogórniczym oraz określenie roli mikoryzy arbuskularnej w ograniczaniu stresu oksydacyjnego w roślinach. Aby obniżyć poziom kolonizacji mikoryzowej i określić rolę grzybów arbuskularnych w stresie oksydacyjnym, część roślin została jednorazowo potraktowana fungicydem Amistar 250 SC (Syngenta, Polska), w postaci oprysku (286 l/ha)
    corecore