2,433 research outputs found

    Supercurrent-induced temperature gradient across a nonequilibrium SNS Josephson junction

    Full text link
    Using tunneling spectroscopy, we have measured the local electron energy distribution function in the normal part of a superconductor-normal metal-superconductor (SNS) Josephson junction containing an extra lead to a normal reservoir. In the presence of simultaneous supercurrent and injected quasiparticle current, the distribution function exhibits a sharp feature at very low energy. The feature is odd in energy, and odd under reversal of either the supercurrent or the quasiparticle current direction. The feature represents an effective temperature gradient across the SNS Josephson junction that is controllable by the supercurrent.Comment: 4 pages, 4 figures, corrected typos, added plot to figure

    The Light-Cone Vacuum in 1+1 Dimensional Super-Yang-Mills Theory

    Get PDF
    The Discrete Light-Cone Quantization (DLCQ) of a supersymmetric SU(N) gauge theory in 1+1 dimensions is discussed, with particular emphasis given to the inclusion of all dynamical zero modes. Interestingly, the notorious `zero-mode problem' is now tractable because of special supersymmetric cancellations. In particular, we show that anomalous zero-mode contributions to the currents are absent, in contrast to what is observed in the non-supersymmetric case. We find that the supersymmetric partner of the gauge zero mode is the diagonal component of the fermion zero mode. An analysis of the vacuum structure is provided and it is shown that the inclusion of zero modes is crucial for probing the phase properties of the vacua. In particular, we find that the ground state energy is zero and N-fold degenerate, and thus consistent with unbroken supersymmetry. We also show that the inclusion of zero modes for the light-cone supercharges leaves the supersymmetry algebra unchanged. Finally, we remark that the dependence of the light-cone Fock vacuum in terms of the gauge zero is unchanged in the presence of matter fields.Comment: REVTEX, 15 page

    The use of an aircraft test stand for VTOL handling qualities studies

    Get PDF
    The VTOL flight tests stand for testing control concepts on the X-14B VSS aircraft in hover, is described. This stand permits realistic and safe piloted evaluation and checkout of various control systems and of parameter variations within each system to determine acceptability to the pilot. Pilots can use it as a practical training tool to practice procedures and flying techniques and become familiar with the aircraft characteristics. Some examples of test experience are given. The test stand allows the X14B to maneuver in hover from centered position + or - 9.7 deg in roll and + or - 9.3 deg in pitch, about + or - 6 deg in yaw, and + or - 15 cm in vertical translation. The unique vertical free flight freedom enables study of liftoffs and landings with power conditions duplicated. The response on the stand agrees well with that measured in free hovering flight, and pilot comments confirm this

    Finiteness Conditions for Light-Front Hamiltonians

    Get PDF
    In the context of simple models, it is shown that demanding finiteness for physical masses with respect to a longitudinal cutoff, can be used to fix the ambiguity in the renormalization of fermions masses in the Hamiltonian light-front formulation. Difficulties that arise in applications of finiteness conditions to discrete light-cone quantization are discussed.Comment: REVTEX, 9 page

    Anti-Periodic Boundary Conditions in Supersymmetric DLCQ

    Full text link
    It is of considerable importance to have a numerical method for solving supersymmetric theories that can support a non-zero central charge. The central charge in supersymmetric theories is in general a boundary integral and therefore vanishes when one uses periodic boundary conditions. One is therefore prevented from studying BPS states in the standard supersymmetric formulation of DLCQ (SDLCQ). We present a novel formulation of SDLCQ where the fields satisfy anti-periodic boundary conditions. The Hamiltonian is written as the anti-commutator of two charges, as in SDLCQ. The anti-periodic SDLCQ we consider breaks supersymmetry at finite resolution, but requires no renormalization and becomes supersymmetric in the continuum limit. In principle, this method could be used to study BPS states. However, we find its convergence to be disappointingly slow.Comment: 9pp, 2 figure

    Masses of the physical mesons from an effective QCD--Hamiltonian

    Get PDF
    The front form Hamiltonian for quantum chromodynamics, reduced to an effective Hamiltonian acting only in the qqˉq\bar q space, is solved approximately. After coordinate transformation to usual momentum space and Fourier transformation to configuration space a second order differential equation is derived. This retarded Schr\"odinger equation is solved by variational methods and semi-analytical expressions for the masses of all 30 pseudoscalar and vector mesons are derived. In view of the direct relation to quantum chromdynamics without free parameter, the agreement with experiment is remarkable, but the approximation scheme is not adequate for the mesons with one up or down quark. The crucial point is the use of a running coupling constant αs(Q2)\alpha_s(Q^2), in a manner similar but not equal to the one of Richardson in the equal usual-time quantization. Its value is fixed at the Z mass and the 5 flavor quark masses are determined by a fit to the vector meson quarkonia.Comment: 18 pages, 4 Postscript figure

    On the Spectrum of QCD(1+1) with SU(N_c) Currents

    Get PDF
    Extending previous work, we calculate in this note the fermionic spectrum of two-dimensional QCD (QCD_2) in the formulation with SU(N_c) currents. Together with the results in the bosonic sector this allows to address the as yet unresolved task of finding the single-particle states of this theory as a function of the ratio of the numbers of flavors and colors, \lambda=N_f/N_c, anew. We construct the Hamiltonian matrix in DLCQ formulation as an algebraic function of the harmonic resolution K and the continuous parameter \lambda. Amongst the more surprising findings in the fermionic sector chiefly considered here is that the fermion momentum is a function of \lambda. This dependence is necessary in order to reproduce the well-known 't Hooft and large N_f spectra. Remarkably, those spectra have the same single-particle content as the ones in the bosonic sectors. The twist here is the dramatically different sizes of the Fock bases in the two sectors, which makes it possible to interpret in principle all states of the discrete approach. The hope is that some of this insight carries over into the continuum. We also present some new findings concerning the single-particle spectrum of the adjoint theory.Comment: 21 pp., 13 figures, version published in PR

    Simulation of Dimensionally Reduced SYM-Chern-Simons Theory

    Get PDF
    A supersymmetric formulation of a three-dimensional SYM-Chern-Simons theory using light-cone quantization is presented, and the supercharges are calculated in light-cone gauge. The theory is dimensionally reduced by requiring all fields to be independent of the transverse dimension. The result is a non-trivial two-dimensional supersymmetric theory with an adjoint scalar and an adjoint fermion. We perform a numerical simulation of this SYM-Chern-Simons theory in 1+1 dimensions using SDLCQ (Supersymmetric Discrete Light-Cone Quantization). We find that the character of the bound states of this theory is very different from previously considered two-dimensional supersymmetric gauge theories. The low-energy bound states of this theory are very ``QCD-like.'' The wave functions of some of the low mass states have a striking valence structure. We present the valence and sea parton structure functions of these states. In addition, we identify BPS-like states which are almost independent of the coupling. Their masses are proportional to their parton number in the large-coupling limit.Comment: 18pp. 7 figures, uses REVTe
    • …
    corecore