33 research outputs found

    Cytostatic Factor Proteins Are Present in Male Meiotic Cells and ÎČ-Nerve Growth Factor Increases Mos Levels in Rat Late Spermatocytes

    Get PDF
    Background: In co-cultures of pachytene spermatocytes with Sertoli cells, beta-NGF regulates the second meiotic division by blocking secondary spermatocytes in metaphase (metaphase II), and thereby lowers round spermatid formation. In vertebrates, mature oocytes are arrested at metaphase II until fertilization, because of the presence of cytostatic factor (CSF) in their cytoplasm. By analogy, we hypothesized the presence of CSF in male germ cells. Methodology/Principal Findings: We show here, that Mos, Emi2, cyclin E and Cdk2, the four proteins of CSF, and their respective mRNAs, are present in male rat meiotic cells; this was assessed by using Western blotting, immunocytochemistry and reverse transcriptase PCR. We measured the relative cellular levels of Mos, Emi2, Cyclin E and Cdk2 in the meiotic cells by flow cytometry and found that the four proteins increased throughout the first meiotic prophase, reaching their highest levels in middle to late pachytene spermatocytes, then decreased following the meiotic divisions. In co-cultures of pachytene spermatocytes with Sertoli cells, beta-NGF increased the number of metaphases II, while enhancing Mos and Emi2 levels in middle to late pachytene spermatocytes, pachytene spermatocytes in division and secondary spermatocytes. Conclusion/Significance: Our results suggest that CSF is not restricted to the oocyte. In addition, they reinforce the view that NGF, by enhancing Mos in late spermatocytes, is one of the intra-testicular factors which adjusts the number of round spermatids that can be supported by Sertoli cells

    Establishment and cryptic transmission of Zika virus in Brazil and the Americas

    Get PDF
    Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil1. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 20162) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 20162). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease3. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus

    Six

    Full text link

    A prognostic signature of G₂ checkpoint function in melanoma cell lines

    Full text link
    As DNA damage checkpoints are barriers to carcinogenesis, G(2) checkpoint function was quantified to test for override of this checkpoint during melanomagenesis. Primary melanocytes displayed an effective G(2) checkpoint response to ionizing radiation (IR)-induced DNA damage. Thirty-seven percent of melanoma cell lines displayed a significant defect in G(2) checkpoint function. Checkpoint function was melanoma subtype-specific with “epithelial-like” melanoma lines, with wild type NRAS and BRAF displaying an effective checkpoint, while lines with mutant NRAS and BRAF displayed defective checkpoint function. Expression of oncogenic B-Raf in a checkpoint-effective melanoma attenuated G(2) checkpoint function significantly but modestly. Other alterations must be needed to produce the severe attenuation of G(2) checkpoint function seen in some BRAF-mutant melanoma lines. Quantitative trait analysis tools identified mRNA species whose expression was correlated with G(2) checkpoint function in the melanoma lines. A 165 gene signature was identified with a high correlation with checkpoint function (p < 0.004) and low false discovery rate (≀ 0.077). The G(2) checkpoint gene signature predicted G(2) checkpoint function with 77–94% accuracy. The signature was enriched in lysosomal genes and contained numerous genes that are associated with regulation of chromatin structure and cell cycle progression. The core machinery of the cell cycle was not altered in checkpoint-defective lines but rather numerous mediators of core machinery function were. When applied to an independent series of primary melanomas, the predictive G(2) checkpoint signature was prognostic of distant metastasis-free survival. These results emphasize the value of expression profiling of primary melanomas for understanding melanoma biology and disease prognosis

    Analysis of ATP-binding cassette transporter expression in drug-selected cell lines by a microarray dedicated to multidrug resistance

    Full text link
    Discovery of the multidrug resistance protein 1 (MDR1), an ATP-binding cassette (ABC) transporter able to transport many anticancer drugs, was a clinically relevant breakthrough in multidrug resistance research. Although the overexpression of ABC transporters such as P-glycoprotein/ABCB1, MRP1/ABCC1, and MXR/ABCG2 seems to be a major cause of failure in the treatment of cancer, acquired resistance to multiple anticancer drugs may also be multifactorial, involving alteration of detoxification processes, apoptosis, DNA repair, drug uptake, and overexpression of other ABC transporters. As a tool for the study of such phenomena, we designed and created a microarray platform, the ABC-ToxChip, to evaluate relative levels of transcriptional activation among genes involved in the various mechanisms of resistance. In the ABC-ToxChip, a comprehensive set of genes important in toxicological responses (represented by 2200 cDNA probes) is complemented with probes specifically matching ABC transporters as well as oligonucleotides representing 18,000 unique human genes. By comparing the transcriptional profiles of KB-3-1 and DU-145 parental cells with resistant derivatives selected in colchicine (KB-8-5), and 9-nitro-camptothecin (RCO.1), respectively, we demonstrate that ABC transporters (ABCB1/MDR1 and ABCC2/MRP2, respectively) show dramatic overexpression, whereas the glutathione S-transferase gene GST-Pi shows the strongest decrease in expression among the 20,000 genes studied. The results were confirmed by quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. The custom-designed ABC-Tox microarray presented here will be helpful to elucidate mechanisms leading to anticancer drug resistance

    Specific interference with gene function by double-stranded RNA in early mouse development

    Full text link
    The use of double-stranded (ds) RNA is a powerful way of interfering with gene expression in a range of organisms, but doubts have been raised about whether it could be successful in mammals. Here, we show that dsRNA is effective as a specific inhibitor of the function of three genes in the mouse, namely maternally expressed c-mos in the oocyte and zygotically expressed E-cadherin or a GFP transgene in the preimplantation embryo. The phenotypes observed are the same as those reported for null mutants of the endogenous genes. These findings offer the opportunity to study development and gene regulation in normal and diseased cells
    corecore