8 research outputs found

    РаспознаваниС ΠΏΠΎΠ΄ΡΡ‚ΠΈΠ»Π°ΡŽΡ‰Π΅ΠΉ повСрхности Π·Π΅ΠΌΠ»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ свСрточной Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти Π½Π° ΠΎΠ΄Π½ΠΎΠΏΠ»Π°Ρ‚Π½ΠΎΠΌ ΠΌΠΈΠΊΡ€ΠΎΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π΅

    Get PDF
    The article presents development results for hardware and software system (micromodule), which detects and classifies underlying surface images of Earth. Given device has size 5.2Γ—7.4Γ—3.1 cm, mass 52 g and uses convolutional neural network based on MobileNetV2 architecture for image classification. The micromodule can be installed on board of a small spacecraft or a light unmanned aerial vehicle (drone). The information provided in this paper could be useful for engineers and researchers who are developing compact budget mobile systems for processing, analyzing and recognition of images

    Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌ для Π±ΠΎΡ€Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ микромодуля ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ распознавания ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ

    Get PDF
    This paper is devoted to the analysis of basic hardware and software of recent cheap and commercially available computing microplatforms for selecting an appropriate solution for development of an onboard micromodule for preliminary recognition and selection of images of underlying surface of given types. It is assumed that the corresponding versions of the micromodule can be installed on board of small spacecraft or light unmanned aerial vehicles (drones). In this paper we consider a variant of a micromodule for drones. When choosing a microplatform, the main limitations were its low weight (no more than 300 g, including camera and interface equipment) and its relatively high performance (time for frame processing of a color image 320Γ—240 pixels is no more than 300 ms). Another important limitation was the low price and commercial availability of microplatform on the Belarusian market. The information provided in this paper could be useful for engineers and researchers who are developing compact budget mobile systems for processing, analyzing and recognition of images.ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·Π° Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π½Π΅Π΄ΠΎΡ€ΠΎΠ³ΠΈΡ… ΠΈ коммСрчСски доступных Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌ с Ρ†Π΅Π»ΡŒΡŽ Π²Ρ‹Π±ΠΎΡ€Π° подходящСго Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π±ΠΎΡ€Ρ‚ΠΎΠ²ΠΎΠ³ΠΎ микромодуля ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ распознавания ΠΈ ΠΎΡ‚Π±ΠΎΡ€Π° ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎΠ΄ΡΡ‚ΠΈΠ»Π°ΡŽΡ‰ΠΈΡ… повСрхностСй Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ². ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ микромодуля ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ установлСны Π½Π° Π±ΠΎΡ€Ρ‚Ρƒ ΠΌΠ°Π»Ρ‹Ρ… космичСских Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π»ΠΈΠ±ΠΎ Π»Π΅Π³ΠΊΠΈΡ… бСспилотных Π»Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² (Π΄Ρ€ΠΎΠ½ΠΎΠ²). РассматриваСтся Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ микромодуля для Π΄Ρ€ΠΎΠ½ΠΎΠ². ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΈ Π²Ρ‹Π±ΠΎΡ€Π΅ ΠΌΠΈΠΊΡ€ΠΎΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡ‹ Π±Ρ‹Π» Π΅Π΅ нСбольшой вСс (Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 300 Π³, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΊΠ°ΠΌΠ΅Ρ€Ρƒ ΠΈ интСрфСйсноС ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅) ΠΏΡ€ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ высокой ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ (врСмя распознавания ΠΊΠ°Π΄Ρ€Π° Ρ†Π²Π΅Ρ‚Π½ΠΎΠ³ΠΎ изобраТСния Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ 320Γ—240 пиксСлов Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 300 мс). Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ Π²Π°ΠΆΠ½Ρ‹ΠΌΠΈ ограничСниями являлись нСвысокая Ρ†Π΅Π½Π° ΠΈ коммСрчСская Π΄ΠΎΡΡ‚ΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΈΠΊΡ€ΠΎΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΡ‹ Π½Π° Ρ€Ρ‹Π½ΠΊΠ΅ БСларуси. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ свСдСния ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π°ΠΌ ΠΈ Π½Π°ΡƒΡ‡Π½Ρ‹ΠΌ Ρ€Π°Π±ΠΎΡ‚Π½ΠΈΠΊΠ°ΠΌ, Ρ€Π°Π·Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌ ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½Ρ‹Π΅ Π±ΡŽΠ΄ΠΆΠ΅Ρ‚Π½Ρ‹Π΅ ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ систСмы ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ распознавания ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ

    РаспознаваниС ΠΏΠΎΠ΄ΡΡ‚ΠΈΠ»Π°ΡŽΡ‰Π΅ΠΉ повСрхности Π—Π΅ΠΌΠ»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ свСрточной Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти Π½Π° ΠΎΠ΄Π½ΠΎΠΏΠ»Π°Ρ‚Π½ΠΎΠΌ ΠΌΠΈΠΊΡ€ΠΎΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π΅

    Get PDF
    The results of the development of hardware and software system (micromodule), which detects and classifies underlying surface images of the Earth are presented. The micromodule can be installed on board of a light unmanned aerial vehicle (drone). The device has the size 5.2Γ—7.4Γ—3.1 cm, the weight52 g, runs on a Raspberry Pi Zero Wireless single-board microcomputer and uses a convolutional neural network based on MobileNetV2 architecture for real-time image classification. When developing the micromodule, the authors aimed to achieve a real-time image classification on inexpensive mobile equipment with low computing power so that the classification quality is Β comparable Β to Β popular Β deep Β convolutional Β network Β architectures. The provided information could be useful for engineers and researchers who are developing compact budget mobile systems for processing, analyzing and recognition of images.ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎ-Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ комплСкса (микромодуля) ΠΏΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΡŽ ΠΈ классификации ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎΠ΄ΡΡ‚ΠΈΠ»Π°ΡŽΡ‰Π΅ΠΉ повСрхности Π—Π΅ΠΌΠ»ΠΈ. ΠœΠΈΠΊΡ€ΠΎΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π½Π° Π±ΠΎΡ€Ρ‚Ρƒ Π»Π΅Π³ΠΊΠΈΡ… бСспилотных Π»Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² (Π΄Ρ€ΠΎΠ½ΠΎΠ²).Β ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ устройство ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ 5,2Γ—7,4Γ—3,1 см, массу 52Β Π³., Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΏΠ»Π°Ρ‚Π½ΠΎΠΌ ΠΌΠΈΠΊΡ€ΠΎΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Raspberry Pi Zero Wireless ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ ΡΠ²Π΅Ρ€Ρ‚ΠΎΡ‡Π½ΡƒΡŽ Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΡƒΡŽ ΡΠ΅Ρ‚ΡŒ Π½Π° основС Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Ρ‹ MobileNetV2 для классификации ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Π² Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠŸΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ микромодуля Π°Π²Ρ‚ΠΎΡ€Ρ‹ прСслСдовали Ρ†Π΅Π»ΡŒ Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ качСства  классификации Β ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ Β Π² Β Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠΌ Β Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Β Π½Π° Β Π½Π΅Π΄ΠΎΡ€ΠΎΠ³ΠΎΠΌ  мобильном Β ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠΈ с ΠΌΠ°Π»ΠΎΠΉ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ, сопоставимого с качСством классификации популярными Π°Ρ€Ρ…ΠΈΡ‚Π΅ΠΊΡ‚ΡƒΡ€Π°ΠΌΠΈ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… свСрточных сСтСй. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ свСдСния ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π°ΠΌ ΠΈ Π½Π°ΡƒΡ‡Π½Ρ‹ΠΌ Ρ€Π°Π±ΠΎΡ‚Π½ΠΈΠΊΠ°ΠΌ, Ρ€Π°Π·Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΌ ΠΊΠΎΠΌΠΏΠ°ΠΊΡ‚Π½Ρ‹Π΅ Π±ΡŽΠ΄ΠΆΠ΅Ρ‚Π½Ρ‹Π΅ ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Π΅ систСмы ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ распознавания ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ

    Comparative analysis of budget computing platforms for a portable micromodule of on-board image

    Get PDF
    This paper is devoted to the analysis of basic hardware and software of recent cheap and commercially available computing microplatforms for selecting an appropriate solution for development of an onboard micromodule for preliminary classification and selection of images of underlying surface of given types. It is assumed that the corresponding versions of the micromodule can be installed on board of small spacecraft or light unmanned aerial vehicles (drones). In this paper we consider a variant of a micromodule for drones. When choosing a microplatform, the main limitations were its low weight (no more than 300 grams, including camera and interface equipment) and its relatively high performance (time for frame processing of a color image 320Π§240 pixels is no more than 300 milliseconds). Another important limitation was the low price and commercial availability of micro-platform on the Belarusian market. The information provided in this paper could be useful for engineers and researchers who develop compact budget mobile systems for processing, analyzing and classification of images

    Comparative analysis of computing platforms for onboard micromodule of provisional image recognition

    Get PDF
    This paper is devoted to the analysis of basic hardware and software of recent cheap and commercially available computing microplatforms for selecting an appropriate solution for development of an onboard micromodule for preliminary recognition and selection of images of underlying surface of given types. It is assumed that the corresponding versions of the micromodule can be installed on board of small spacecraft or light unmanned aerial vehicles (drones). In this paper we consider a variant of a micromodule for drones. When choosing a microplatform, the main limitations were its low weight (no more than 300 g, including camera and interface equipment) and its relatively high performance (time for frame processing of a color image 320Γ—240 pixels is no more than 300 ms). Another important limitation was the low price and commercial availability of microplatform on the Belarusian market. The information provided in this paper could be useful for engineers and researchers who are developing compact budget mobile systems for processing, analyzing and recognition of images

    Recognition of underlying surface using a convolutional neural network on a single-board computer

    Get PDF
    The results of the development of hardware and software system (micromodule), which detects and classifies underlying surface images of the Earth are presented. The micromodule can be installed on board of a light unmanned aerial vehicle (drone). The device has the size 5.2Γ—7.4Γ—3.1 cm, the weight52 g, runs on a Raspberry Pi Zero Wireless single-board microcomputer and uses a convolutional neural network based on MobileNetV2 architecture for real-time image classification. When developing the micromodule, the authors aimed to achieve a real-time image classification on inexpensive mobile equipment with low computing power so that the classification quality is Β comparable Β to Β popular Β deep Β convolutional Β network Β architectures. The provided information could be useful for engineers and researchers who are developing compact budget mobile systems for processing, analyzing and recognition of images

    Communication Management in Social Networks for the Actualization of Publications in the World Scientific Community on the Example of the Network Researchgate

    Full text link
    Development of social networks of scientists in the World Wide Web creates new schemes for wider awareness of the global scientists' community of scientific research findings. In this case, existing information technologies are facing difficulties in resolving contradictions, generated by a broad stream of scientific publications and complexity of access to these publications. Resolution of this controversy is carried out thanks to "digitalization" of scientific content, which predetermines possibility of implementation of new principles for information disseminating, such as SMM (Social Media Marketing).To substantiate and assess SMM, we accepted the hypothesis about possibility of phenomenological presentation of lifecycle of scientific publications with the states of readers' community: S1 – unawareness; S2 –awareness; S3 – positive attitude; S4 – citation; S5 – negative attitude. In view of these states, the model of publication lifecycle based on a Markov chain was constructed. It was proposed to use SMM principles from professional marketing agencies in relation to promotion of scientific content on the Internet. A distinctive feature of this approach is that proposed Markov chain is adjusted to different possible states of reader's community on assessment of publication by establishing the values of transition probabilities, which are chosen for particular states based on the expert evaluation.We investigated the influence of expansion of readers' audience, provision of presentation clarity, articles uniqueness, professional orientation, and data objectivity on the distribution of publication readership. Effectiveness of publications promotion with an active authors' participation to follow up on their publications in social scientific networks was shown
    corecore