12 research outputs found

    Microtubule and actin cytoskeleton-independent <i>C. jejuni</i> invasion of Caco-2 cells.

    No full text
    <p>Islands of polarized Caco-2 cells were infected (2 h) with <i>C. jejuni</i> strain 108p4 (Red) in the absence of presence of the indicated actin cytoskeleton or microtubules disrupting or stabilizing drugs. Cells were fixed and stained with WGA-alexa fluor633 (Blue). Infected cells were visualized with confocal microscopy. The following drugs were used: (A) cytochalasin D (3 µM) and jasplakinolide (1 µM) added at 1 h prior to infection; (B) colchicine (10 µM) or paclitaxel (1 µM) added at 1 h prior to infection; (C) Colchicine (10 µM) added at 1 h after start of the infection and cells fixed at 2 h post infection. As control, cells were pre-treated with an equivalent amount of solvent DMSO (Final concentration 0.2%).</p

    Bacterial viability of intracellular <i>C. jejuni</i>.

    No full text
    <p>Islands of polarized Caco-2 cells were infected with <i>C. jejuni</i> for 5 h in Hepes buffer, washed, incubated (3 h) with gentamicin (250 ìg/ml) in DMEM, washed again, and incubated for an additional 42 h in DMEM plus 10% FCS with a low dose of gentamicin (50 ìg/ml). At the indicated times, samples were prepared for bacterial viability assay. (A) Gentamicin killing assay showing the bacterial recovery of intracellular <i>C. jejuni</i> strains 108 containing pMA5-metK-luc (white and light grey bars) and 81–176 containing pMA5-metK-luc (dark grey and black bars) from Caco-2 cells at the indicated duration of infection. CFU were enumerated after 48 h of recovery on agar plates in a 0.2% oxygen (white and dark grey bars) and 5% oxygen (light grey and black bars) environment and indicated as CFU per well. (B) Bacterial viability as measured by bacterial luciferase reporter assay at the indicated time points. Values for results presented in (A) and (B) are the mean ± SEM of at 3 independent experiments in performed in duplicate.</p

    <i>C. jejuni</i> invades polarized Caco-2 islands via subvasion with high efficiency.

    No full text
    <p>Confocal laser microscopy on non-infected and <i>C. jejuni</i>-infected islands of polarized Caco-2 cells. (A) Uninfected island of Caco-2 cells stained with the membrane marker WGA-Alexa fluor633 (Blue) and an anti-occludin antibody (Green) showing the presence of tight junctions. (B) Caco-2 cells (Blue) at 1 h of infection in DMEM showing <i>C. jejuni</i> strain 108p4 (Red) mostly located at the basal side of cells near the edge of the island of polarized cells. (C) Caco-2 cells (Blue) at 5 h of infection in DMEM demonstrating intracellular <i>C. jejuni</i> strain 108p4 (Red) at the center of the island of cells with tight junctions (Green). (D). Polarized Caco-2 cells (Blue) infected (1 h and 5 h) with a mixture of <i>C. jejuni</i> strains 108p4 (Red) and 81–176 (Green) showing invasion of Caco-2 cells by both strains. Transversal optical sections of the cells are depicted at the bottom of each panel to show the location of the bacteria relative to the cell basis.</p

    Effect of ATP depletion on <i>C. jejuni</i> and <i>E. coli<sup>inv</sup></i> invasion.

    No full text
    <p>Islands of polarized Caco-2 cells were treated for 1 h with 3 mM of DNP and then infected with <i>C. jejuni</i> strain 108p4 (Red) and <i>E. coli<sup>inv</sup></i> (Green) for 2 h after which the cells were stained with WGA-Alexa fluor633 (Blue), fixed, and visualized with confocal microscopy. As a control, islands were treated with an equivalent amount of solvent acetone (final concentration: 0.3%) and infected. Note that DNP inhibits the invasion of <i>E. coli<sup>inv</sup></i> but not of <i>C. jejuni</i>.</p

    Image_2_Clodronate is not protective in lethal viral encephalitis despite substantially reducing inflammatory monocyte infiltration in the CNS.tiff

    No full text
    Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6Chi inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes. Macrophages can also be targeted more broadly by administration of clodronate-encapsulated liposomes, which induce apoptosis in phagocytes. In this study, clodronate reduced the inflammatory infiltrate by 70% in WNE, however, surprisingly, this had no effect on disease outcome. More detailed analysis demonstrated a compensatory increase in neutrophils and enhanced activation status of microglia in the brain. In addition, we observed increased numbers of Ly6Chi BM monocytes with an increased proliferative capacity and expression of SCA-1 and CD16/32, potentially indicating output of immature cells from the BM. Once in the brain, these cells were more phagocytic and had a reduced expression of antigen-presenting molecules. Lastly, we show that clodronate also reduces non-myeloid cells in the spleen and BM, as well as ablating red blood cells and their proliferation. These factors likely impeded the therapeutic potential of clodronate in WNE. Thus, while clodronate provides an excellent system to deplete macrophages in the body, it has larger and broader effects on the phagocytic and non-phagocytic system, which must be considered in the interpretation of data.</p

    Image_3_Clodronate is not protective in lethal viral encephalitis despite substantially reducing inflammatory monocyte infiltration in the CNS.tif

    No full text
    Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6Chi inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes. Macrophages can also be targeted more broadly by administration of clodronate-encapsulated liposomes, which induce apoptosis in phagocytes. In this study, clodronate reduced the inflammatory infiltrate by 70% in WNE, however, surprisingly, this had no effect on disease outcome. More detailed analysis demonstrated a compensatory increase in neutrophils and enhanced activation status of microglia in the brain. In addition, we observed increased numbers of Ly6Chi BM monocytes with an increased proliferative capacity and expression of SCA-1 and CD16/32, potentially indicating output of immature cells from the BM. Once in the brain, these cells were more phagocytic and had a reduced expression of antigen-presenting molecules. Lastly, we show that clodronate also reduces non-myeloid cells in the spleen and BM, as well as ablating red blood cells and their proliferation. These factors likely impeded the therapeutic potential of clodronate in WNE. Thus, while clodronate provides an excellent system to deplete macrophages in the body, it has larger and broader effects on the phagocytic and non-phagocytic system, which must be considered in the interpretation of data.</p

    Image_5_Clodronate is not protective in lethal viral encephalitis despite substantially reducing inflammatory monocyte infiltration in the CNS.tiff

    No full text
    Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6Chi inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes. Macrophages can also be targeted more broadly by administration of clodronate-encapsulated liposomes, which induce apoptosis in phagocytes. In this study, clodronate reduced the inflammatory infiltrate by 70% in WNE, however, surprisingly, this had no effect on disease outcome. More detailed analysis demonstrated a compensatory increase in neutrophils and enhanced activation status of microglia in the brain. In addition, we observed increased numbers of Ly6Chi BM monocytes with an increased proliferative capacity and expression of SCA-1 and CD16/32, potentially indicating output of immature cells from the BM. Once in the brain, these cells were more phagocytic and had a reduced expression of antigen-presenting molecules. Lastly, we show that clodronate also reduces non-myeloid cells in the spleen and BM, as well as ablating red blood cells and their proliferation. These factors likely impeded the therapeutic potential of clodronate in WNE. Thus, while clodronate provides an excellent system to deplete macrophages in the body, it has larger and broader effects on the phagocytic and non-phagocytic system, which must be considered in the interpretation of data.</p

    Image_1_Clodronate is not protective in lethal viral encephalitis despite substantially reducing inflammatory monocyte infiltration in the CNS.tiff

    No full text
    Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6Chi inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes. Macrophages can also be targeted more broadly by administration of clodronate-encapsulated liposomes, which induce apoptosis in phagocytes. In this study, clodronate reduced the inflammatory infiltrate by 70% in WNE, however, surprisingly, this had no effect on disease outcome. More detailed analysis demonstrated a compensatory increase in neutrophils and enhanced activation status of microglia in the brain. In addition, we observed increased numbers of Ly6Chi BM monocytes with an increased proliferative capacity and expression of SCA-1 and CD16/32, potentially indicating output of immature cells from the BM. Once in the brain, these cells were more phagocytic and had a reduced expression of antigen-presenting molecules. Lastly, we show that clodronate also reduces non-myeloid cells in the spleen and BM, as well as ablating red blood cells and their proliferation. These factors likely impeded the therapeutic potential of clodronate in WNE. Thus, while clodronate provides an excellent system to deplete macrophages in the body, it has larger and broader effects on the phagocytic and non-phagocytic system, which must be considered in the interpretation of data.</p

    Image_6_Clodronate is not protective in lethal viral encephalitis despite substantially reducing inflammatory monocyte infiltration in the CNS.tiff

    No full text
    Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6Chi inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes. Macrophages can also be targeted more broadly by administration of clodronate-encapsulated liposomes, which induce apoptosis in phagocytes. In this study, clodronate reduced the inflammatory infiltrate by 70% in WNE, however, surprisingly, this had no effect on disease outcome. More detailed analysis demonstrated a compensatory increase in neutrophils and enhanced activation status of microglia in the brain. In addition, we observed increased numbers of Ly6Chi BM monocytes with an increased proliferative capacity and expression of SCA-1 and CD16/32, potentially indicating output of immature cells from the BM. Once in the brain, these cells were more phagocytic and had a reduced expression of antigen-presenting molecules. Lastly, we show that clodronate also reduces non-myeloid cells in the spleen and BM, as well as ablating red blood cells and their proliferation. These factors likely impeded the therapeutic potential of clodronate in WNE. Thus, while clodronate provides an excellent system to deplete macrophages in the body, it has larger and broader effects on the phagocytic and non-phagocytic system, which must be considered in the interpretation of data.</p

    Table_2_Clodronate is not protective in lethal viral encephalitis despite substantially reducing inflammatory monocyte infiltration in the CNS.pdf

    No full text
    Bone marrow (BM)-derived monocytes induce inflammation and tissue damage in a range of pathologies. In particular, in a mouse model of West Nile virus (WNV) encephalitis (WNE), nitric oxide-producing, Ly6Chi inflammatory monocytes from the BM are recruited to the central nervous system (CNS) and contribute to lethal immune pathology. Reducing the migration of these cells into the CNS using monoclonal antibody blockade, immune-modifying particles or CSF-1R inhibitors reduces neuroinflammation, improving survival and/or clinical outcomes. Macrophages can also be targeted more broadly by administration of clodronate-encapsulated liposomes, which induce apoptosis in phagocytes. In this study, clodronate reduced the inflammatory infiltrate by 70% in WNE, however, surprisingly, this had no effect on disease outcome. More detailed analysis demonstrated a compensatory increase in neutrophils and enhanced activation status of microglia in the brain. In addition, we observed increased numbers of Ly6Chi BM monocytes with an increased proliferative capacity and expression of SCA-1 and CD16/32, potentially indicating output of immature cells from the BM. Once in the brain, these cells were more phagocytic and had a reduced expression of antigen-presenting molecules. Lastly, we show that clodronate also reduces non-myeloid cells in the spleen and BM, as well as ablating red blood cells and their proliferation. These factors likely impeded the therapeutic potential of clodronate in WNE. Thus, while clodronate provides an excellent system to deplete macrophages in the body, it has larger and broader effects on the phagocytic and non-phagocytic system, which must be considered in the interpretation of data.</p
    corecore