297 research outputs found

    Helium Nanodroplets Doped with Copper and Water

    Get PDF
    Copper nanoparticles are promising, low-cost candidates for the catalytic splitting of water and production of hydrogen gas. The present gas-phase study, based on the synthesis of copper-water complexes in ultracold helium nanodroplets followed by electron ionization, attempts to find evidence for dissociative water adsorption and H2 formation. Mass spectra show that H2O–Cu complexes containing dozens of copper and water molecules can be formed in the helium droplets. However, ions that would signal the production and escape of H2, such as (H2O)n−2(OH)2Cum+ or the isobaric (H2O)n−1OCum+, could not be detected. We do observe an interesting anomaly though: While the abundance of stoichiometric (H2O)nCum+ ions generally exceeds that of protonated or dehydrogenated ions, the trend is reversed for (H2O)OHCu2+ and (H2O)2OHCu2+; these ions are more abundant than (H2O)2Cu2+ and (H2O)3Cu2+, respectively. Moreover, (H2O)2OHCu2+ is much more abundant than other ions in the (H2O)n−1OHCu2+ series. A byproduct of our experiment is the observation of enhanced stability of He6Cu+, He12Cu+, He24Cu+, and He2Cu2+

    Adsorption of Sodium and Cesium on Aggregates of C60

    Get PDF
    We explore the formation of C60 sodium and C60 cesium complexes in superfluid helium nanodroplets. Anomalies in mass spectra of these doped droplets reveal anomalies in the stability of ions. (C60) m Cs+ n ions ( m ≤ 6) are particularly abundant if they contain n = 6m + 1 cesium atoms; (C60) m Cs2+ n dications ( m ≤ 3 or 5) are abundant if n = 6m + 2. These findings are consistent with the notion that alkali metal atoms (A) transfer their valence electrons into the three-fold degenerate lowest unoccupied orbital of C60, resulting in particularly stable C60A6 building blocks. However, (C60) 4CsCs2+ n dications display an entirely different pattern; instead of an expected anomaly at n = 6 × 4 + 2 = 26 we observe a strong odd-even alternation starting at n = 6. Also surprising is the effect of adding one H2O or CO2 molecule to (C60) m Cs n mono- or dications; anomalies shift by two units as if the impurity were acting as an acceptor for two valence electrons from the alkali metal atoms

    Doubly Charged CO2 Clusters Formed by Ionization of Doped Helium Nanodroplets

    Get PDF
    Helium nanodroplets are doped with carbon dioxide and ionized by electrons. Doubly charged cluster ions are, for the first time, identified based on their characteristic patterns of isotopologues. Thanks to the high mass resolution, large dynamic range, and a novel method to eliminate contributions from singly charged ions from the mass spectra, we are able to observe doubly charged cluster ions that are smaller than the ones reported in the past. The likely mechanism by which doubly charged ions are formed in doped helium droplets is discussed
    • …
    corecore