20 research outputs found

    Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis

    Get PDF
    Macrophages specialize in removing lipids and debris present in the atherosclerotic plaque. However, plaque progression renders macrophages unable to degrade exogenous atherogenic material and endogenous cargo including dysfunctional proteins and organelles. Here we show that a decline in the autophagy-lysosome system contributes to this as evidenced by a derangement in key autophagy markers in both mouse and human atherosclerotic plaques. By augmenting macrophage TFEB, the master transcriptional regulator of autophagy-lysosomal biogenesis, we can reverse the autophagy dysfunction of plaques, enhance aggrephagy of p62-enriched protein aggregates and blunt macrophage apoptosis and pro-inflammatory IL-1β levels, leading to reduced atherosclerosis. In order to harness this degradative response therapeutically, we also describe a natural sugar called trehalose as an inducer of macrophage autophagy-lysosomal biogenesis and show trehalose's ability to recapitulate the atheroprotective properties of macrophage TFEB overexpression. Our data support this practical method of enhancing the degradative capacity of macrophages as a therapy for atherosclerotic vascular disease

    Membrane estrogen signaling in female reproduction and motivation

    No full text
    Estrogen receptors were initially identified in the uterus, and later throughout the brain and body as intracellular, ligand-regulated transcription factors that affect genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor-α and estrogen receptor-β, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) not only rapidly effect cellular excitability, but can and do ultimately affect gene expression, as seen through the phosphorylation of CREB. A principal mechanism of neuronal mER action is through glutamate-independent transactivation of metabotropic glutamate receptors (mGluRs), which elicits multiple signaling outcomes. The interaction of mERs with mGluRs has been shown to be important in many diverse functions in females, including, but not limited to, reproduction and motivation. Here we review membrane-initiated estrogen receptor signaling in females, with a focus on the interactions between these mERs and mGluRs

    Bilateral Disc Edema With Periphlebitis: Unique Presentation of Anti-MOG Positive Optic Neuritis

    No full text
    Anti-Myelin Oligodendrocyte Glycoprotein Positive (MOG+) optic neuritis is a demyelinating disease of the CNS which frequently presents with bilateral involvement, optic disc edema, and steroid responsiveness.1 Rare cases of anti-MOG+ optic neuritis have been shown to masquerade as neuroretinitis with a macular star.2 We describe a unique case of anti- MOG+ optic neuritis similarly masquerading as neuroretinitis but uniquely also presenting with periphlebitis, a finding not previously described in the literature

    Overlap between telangiectasia and photoreceptor loss increases with progression of macular telangiectasia type 2.

    No full text
    ObjectivesTo examine the topographical correlation between ellipsoid zone loss and telangiectasia in the deep capillary plexus in patients with macular telangiectasia type 2 (MacTel).Methods38 eyes (20 subjects) diagnosed with MacTel were imaged with OCTA between March 2016 and June 2019 in this single center, cross-sectional observational study. The en face OCTA and OCT were evaluated for areas of deep capillary plexus telangiectasia and ellipsoid zone loss, respectively, and their outlines were superimposed to study their overlap (mm2). The primary outcome was percentage of overlap and its relationship to MacTel stage. Secondary outcomes included the relationship between neovascularization and hyperreflective foci as well as correlations between ellipsoid zone loss, deep capillary plexus telangiectasia and visual acuity.ResultsIn nonproliferative MacTel stage, ellipsoid zone loss was localized to margins of telangiectatic areas (mean overlap = 15.2%). In proliferative stages, ellipsoid zone loss showed a higher degree of overlap with telangiectatic areas (mean overlap = 62.8%). Overlap increased with advancing MacTel stages, with an overall average of 45.3%. Overlap correlated highly with ellipsoid zone loss (r = 0.831; pConclusionsEllipsoid zone loss occurs at the margins of deep capillary plexus telangiectasia in nonproliferative MacTel, with progressively increasing overlap as MacTel advances, peaking in proliferative disease. Deep capillary plexus telangiectasia and its overlap with ellipsoid zone loss are two promising markers of nonproliferative MacTel, while hyper-reflective foci are markers for proliferative MacTel

    β-Arrestin Regulates Estradiol Membrane-Initiated Signaling in Hypothalamic Neurons

    Get PDF
    Estradiol (E2) action in the nervous system is the result of both direct nuclear and membrane-initiated signaling (EMS). E2 regulates membrane estrogen receptor-α (ERα) levels through opposing mechanisms of EMS-mediated trafficking and internalization. While ß-arrestin-mediated mERα internalization has been described in the cortex, a role of ß-arrestin in EMS, which underlies multiple physiological processes, remains undefined. In the arcuate nucleus of the hypothalamus (ARH), membrane-initiated E2 signaling modulates lordosis behavior, a measure of female sexually receptivity. To better understand EMS and regulation of ERα membrane levels, we examined the role of ß-arrestin, a molecule associated with internalization following agonist stimulation. In the present study, we used an immortalized neuronal cell line derived from embryonic hypothalamic neurons, the N-38 line, to examine whether ß-arrestins mediate internalization of mERα. β-arrestin-1 (Arrb1) was found in the ARH and in N-38 neurons. In vitro, E2 increased trafficking and internalization of full-length ERα and ERαΔ4, an alternatively spliced isoform of ERα, which predominates in the membrane. Treatment with E2 also increased phosphorylation of extracellular-signal regulated kinases 1/2 (ERK1/2) in N-38 neurons. Arrb1 siRNA knockdown prevented E2-induced ERαΔ4 internalization and ERK1/2 phosphorylation. In vivo, microinfusions of Arrb1 antisense oligodeoxynucleotides (ODN) into female rat ARH knocked down Arrb1 and prevented estradiol benzoate-induced lordosis behavior compared with nonsense scrambled ODN (lordosis quotient: 3 ± 2.1 vs. 85.0 ± 6.0; p < 0.0001). These results indicate a role for Arrb1 in both EMS and internalization of mERα, which are required for the E2-induction of female sexual receptivity

    P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus.

    No full text
    UnlabelledP2X4 receptors are ATP-gated cation channels that are widely expressed in the nervous system. To identify P2X4 receptor-expressing cells, we generated BAC transgenic mice expressing tdTomato under the control of the P2X4 receptor gene (P2rx4). We found sparse populations of tdTomato-positive neurons in most brain areas with patterns that matched P2X4 mRNA distribution. tdTomato expression within microglia was low but was increased by an experimental manipulation that triggered microglial activation. We found surprisingly high tdTomato expression in the hypothalamic arcuate nucleus (Arc) (i.e., within parts of the neural circuitry controlling feeding). Immunohistochemistry and genetic crosses of P2rx4 tdTomato mice with cell-specific GFP reporter lines showed that the tdTomato-expressing cells were mainly AgRP-NPY neurons and tanycytes. There was no electrophysiological evidence for functional expression of P2X4 receptors on AgRP-NPY neuron somata, but instead, we found clear evidence for functional presynaptic P2X4 receptor-mediated responses in terminals of AgRP-NPY neurons onto two of their postsynaptic targets (Arc POMC and paraventricular nucleus neurons), where ATP dramatically facilitated GABA release. The presynaptic responses onto POMC neurons, and the expression of tdTomato in AgRP-NPY neurons and tanycytes, were significantly decreased by food deprivation in male mice in a manner that was partially reversed by the satiety-related peptide leptin. Overall, we provide well-characterized tdTomato reporter mice to study P2X4-expressing cells in the brain, new insights on feeding-related regulation of presynaptic P2X4 receptor responses, and the rationale to explore extracellular ATP signaling in the control of feeding behaviors.Significance statementCells expressing ATP-gated P2X4 receptors have proven problematic to identify and study in brain slice preparations because P2X4 expression is sparse. To address this limitation, we generated and characterized BAC transgenic P2rx4 tdTomato reporter mice. We report the distribution of tdTomato-expressing cells throughout the brain and particularly strong expression in the hypothalamic arcuate nucleus. Together, our studies provide a new, well-characterized tool with which to study P2X4 receptor-expressing cells. The electrophysiological studies enabled by this mouse suggest previously unanticipated roles for ATP and P2X4 receptors in the neural circuitry controlling feeding
    corecore