6 research outputs found

    Assessing nest attentiveness of Common Terns via video cameras and temperature loggers

    Get PDF
    While nest attentiveness plays a critical role in the reproductive success of avian species, nest attentiveness data with high temporal resolution is not available for many species. However, improvements in both video monitoring and temperature logging devices present an opportunity to increase our understanding of this aspect of avian behavior. To investigate nest attentiveness behaviors and evaluate these technologies, we monitored 13 nests across two Common Tern (Sterna hirundo) breeding colonies with a paired video camera - temperature logger approach, while monitoring 63 additional nests with temperature loggers alone. Observations occurred from May to August of 2017 on Poplar (Chesapeake Bay, Maryland, USA) and Skimmer Islands (Isle of Wight Bay, Maryland, USA). We examined data respective to four times of day: Morning (civil dawn‒11:59), Peak (12:00‒16:00), Cooling (16:01‒civil dusk), and Night (civil dusk‒civil dawn). While successful nests had mostly short duration off-bouts and maintained consistent nest attentiveness throughout the day, failed nests had dramatic reductions in nest attentiveness during the Cooling and Night periods (p  0.05), video-monitored nests did have significantly lower clutch sizes (p < 0.05). The paired use of iButtons and video cameras enabled a detailed description of the incubation behavior of COTE. However, while promising for future research, the logistical and potential biological complications involved in the use of these methods suggest that careful planning is needed before these devices are utilized to ensure data is collected in a safe and successful manner.https://doi.org/10.1186/s40657-020-00208-

    The Effects of Mechanical Stress on the Growth, Differentiation, and Paracrine Factor Production of Cardiac Stem Cells

    Get PDF
    Stem cell therapies have been clinically employed to repair the injured heart, and cardiac stem cells are thought to be one of the most potent stem cell candidates. The beating heart is characterized by dynamic mechanical stresses, which may have a significant impact on stem cell therapy. The purpose of this study is to investigate how mechanical stress affects the growth and differentiation of cardiac stem cells and their release of paracrine factors. In this study, human cardiac stem cells were seeded in a silicon chamber and mechanical stress was then induced by cyclic stretch stimulation (60 cycles/min with 120% elongation). Cells grown in non-stretched silicon chambers were used as controls. Our result revealed that mechanical stretching significantly reduced the total number of surviving cells, decreased Ki-67-positive cells, and increased TUNEL-positive cells in the stretched group 24 hrs after stretching, as compared to the control group. Interestingly, mechanical stretching significantly increased the release of the inflammatory cytokines IL-6 and IL-1β as well as the angiogenic growth factors VEGF and bFGF from the cells in 12 hrs. Furthermore, mechanical stretching significantly reduced the percentage of c-kit-positive stem cells, but increased the expressions of cardiac troponin-I and smooth muscle actin in cells 3 days after stretching. Using a traditional stretching model, we demonstrated that mechanical stress suppressed the growth and proliferation of cardiac stem cells, enhanced their release of inflammatory cytokines and angiogenic factors, and improved their myogenic differentiation. The development of this in vitro approach may help elucidate the complex mechanisms of stem cell therapy for heart failure

    Assessing nest attentiveness of Common Terns via video cameras and temperature loggers

    No full text
    Abstract Background While nest attentiveness plays a critical role in the reproductive success of avian species, nest attentiveness data with high temporal resolution is not available for many species. However, improvements in both video monitoring and temperature logging devices present an opportunity to increase our understanding of this aspect of avian behavior. Methods To investigate nest attentiveness behaviors and evaluate these technologies, we monitored 13 nests across two Common Tern (Sterna hirundo) breeding colonies with a paired video camera - temperature logger approach, while monitoring 63 additional nests with temperature loggers alone. Observations occurred from May to August of 2017 on Poplar (Chesapeake Bay, Maryland, USA) and Skimmer Islands (Isle of Wight Bay, Maryland, USA). We examined data respective to four times of day: Morning (civil dawn‒11:59), Peak (12:00‒16:00), Cooling (16:01‒civil dusk), and Night (civil dusk‒civil dawn). Results While successful nests had mostly short duration off-bouts and maintained consistent nest attentiveness throughout the day, failed nests had dramatic reductions in nest attentiveness during the Cooling and Night periods (p  0.05), video-monitored nests did have significantly lower clutch sizes (p < 0.05). Conclusions The paired use of iButtons and video cameras enabled a detailed description of the incubation behavior of COTE. However, while promising for future research, the logistical and potential biological complications involved in the use of these methods suggest that careful planning is needed before these devices are utilized to ensure data is collected in a safe and successful manner
    corecore