2,634 research outputs found

    Differentiation of Blue Ballpoint Pen Inks

    Get PDF

    \u3cem\u3eSalmonella enterica\u3c/em\u3e Serovar Typhimurium Mutants Unable To Convert Malate to Pyruvate and Oxaloacetate Are Avirulent and Immunogenic in BALB/c Mice

    Get PDF
    Previously, we showed that the Salmonella enterica serovar Typhimurium SR-11 tricarboxylic acid (TCA) cycle must operate as a complete cycle for full virulence after oral infection of BALB/c mice (M. Tchawa Yimga, M. P. Leatham, J. H. Allen, D. C. Laux, T. Conway, and P. S. Cohen, Infect. Immun. 74:1130-1140, 2006). In the same study, we showed that for full virulence, malate must be converted to both oxaloacetate and pyruvate. Moreover, it was recently demonstrated that blocking conversion of succinyl-coenzyme A to succinate attenuates serovar Typhimurium SR-11 but does not make it avirulent; however, blocking conversion of succinate to fumarate renders it completely avirulent and protective against subsequent oral infection with the virulent serovar Typhimurium SR-11 wild-type strain (R. Mercado-Lubo, E. J. Gauger, M. P. Leatham, T. Conway, and P. S. Cohen, Infect. Immun. 76:1128-1134, 2008). Furthermore, the ability to convert succinate to fumarate appeared to be required only after serovar Typhimurium SR-11 became systemic. In the present study, evidence is presented that serovar Typhimurium SR-11 mutants that cannot convert fumarate to malate or that cannot convert malate to both oxaloacetate and pyruvate are also avirulent and protective in BALB/c mice. These results suggest that in BALB/c mice, the malate that is removed from the TCA cycle in serovar Typhimurium SR-11 for conversion to pyruvate must be replenished by succinate or one of its precursors, e.g., arginine or ornithine, which might be available in mouse phagocytes

    \u3cem\u3eEscherichia coli\u3c/em\u3e Pathotypes Occupy Distinct Niches in the Mouse Intestine

    Get PDF
    Since the first step of the infection process is colonization of the host, it is important to understand how Escherichia coli pathogens successfully colonize the intestine. We previously showed that enterohemorrhagic O157:H7 strain E. coli EDL933 colonizes a niche in the streptomycin-treated mouse intestine that is distinct from that of human commensal strains, which explains how E. coli EDL933 overcomes colonization resistance imparted by some, but not all, commensal E. coli strains. Here we sought to determine if other E. coli pathogens use a similar strategy. We found that uropathogenic E. coli CFT073 and enteropathogenic E. coli E2348/69 occupy intestinal niches that are distinct from that of E. coli EDL933. In contrast, two enterohemorrhagic strains, E. coli EDL933 and E. coli Sakai, occupy the same niche, suggesting that strategies to prevent colonization by a given pathotype should be effective against other strains of the same pathotype. However, we found that a combination of commensal E. coli strains that can prevent colonization by E. coli EDL933 did not prevent colonization by E. coli CFT073 or E. coli E2348/69. Our results indicate that development of probiotics to target multiple E. coli pathotypes will be problematic, as the factors that govern niche occupation and hence stable colonization vary significantly among strains

    Combating pancreatic cancer with PI3K pathway inhibitors in the era of personalised medicine

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is among the most deadly solid tumours. This is due to a generally late-stage diagnosis of a primarily treatment-refractory disease. Several large-scale sequencing and mass spectrometry approaches have identified key drivers of this disease and in doing so highlighted the vast heterogeneity of lower frequency mutations that make clinical trials of targeted agents in unselected patients increasingly futile. There is a clear need for improved biomarkers to guide effective targeted therapies, with biomarker-driven clinical trials for personalised medicine becoming increasingly common in several cancers. Interestingly, many of the aberrant signalling pathways in PDAC rely on downstream signal transduction through the mitogen-activated protein kinase and phosphoinositide 3-kinase (PI3K) pathways, which has led to the development of several approaches to target these key regulators, primarily as combination therapies. The following review discusses the trend of PDAC therapy towards molecular subtyping for biomarker-driven personalised therapies, highlighting the key pathways under investigation and their relationship to the PI3K pathway

    Nutritional Basis for Colonization Resistance by Human Commensal \u3cem\u3eEscherichia coli\u3c/em\u3e Strains HS and Nissle 1917 Against \u3cem\u3eE. coli\u3c/em\u3e O157:H7 in the Mouse Intestine

    Get PDF
    Escherichia coli is a single species consisting of many biotypes, some of which are commensal colonizers of mammals and others that cause disease. Humans are colonized on average with five commensal biotypes, and it is widely thought that the commensals serve as a barrier to infection by pathogens. Previous studies showed that a combination of three pre-colonized commensal E. coli strains prevents colonization of E. coli O157:H7 in a mouse model (Leatham, et al., 2010, Infect Immun 77: 2876–7886). The commensal biotypes included E. coli HS, which is known to successfully colonize humans at high doses with no adverse effects, and E. coli Nissle 1917, a human commensal strain that is used in Europe as a preventative of traveler\u27s diarrhea. We hypothesized that commensal biotypes could exert colonization resistance by consuming nutrients needed by E. coli O157:H7 to colonize, thus preventing this first step in infection. Here we report that to colonize streptomycin-treated mice E. coli HS consumes six of the twelve sugars tested and E. coli Nissle 1917 uses a complementary yet divergent set of seven sugars to colonize, thus establishing a nutritional basis for the ability of E. coli HS and Nissle 1917 to occupy distinct niches in the mouse intestine. Together these two commensals use the five sugars previously determined to be most important for colonization of E. coli EDL933, an O157:H7 strain. As predicted, the two commensals prevented E. coli EDL933 colonization. The results support a model in which invading pathogenic E. coli must compete with the gut microbiota to obtain the nutrients needed to colonize and establish infection; accordingly, the outcome of the challenge is determined by the aggregate capacity of the native microbiota to consume the nutrients required by the pathogen

    A wavelet analysis on digital microstructure in microbumps

    Get PDF
    This is a conference paper [© IEEE]. It is also available from: http://dx.doi.org/10.1109/ICEPT.2015.7236608. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.© 2015 IEEE. Heterogeneous three-dimensional system integration is the ultimate goal for packaging and integration, where materials are pushed to their physical limits. In this context, the microstructure of packaging materials, which exhibits a multi-scale nature, will be carefully designed and tightly controlled in both manufacturing and in-service conditions to ensure long-term reliability of the electronic products. A multi-level discrete wavelet transform using the haar wavelet is conducted on the dendritic structures, simulated with a phase field model, during solidification in microbumps with different sizes and geometries. The statistical data, e.g. the mean, standard deviation and energy, of the detail coefficients from the wavelet analysis reveal a wealthy of information on the features of the dendritic structure and its evolution during solidification at multiple resolutions. The size and geometry effects on the microstructure formed in the microbumps can thus be quantified by such data. Further studies using techniques such as principle component analysis and Radon transform can be conducted to evaluate the consistence of the result

    Precolonized Human Commensal \u3cem\u3eEscherichia coli\u3c/em\u3e Strains Serve as a Barrier to \u3cem\u3eE. coli\u3c/em\u3e O157:H7 Growth in the Streptomycin-Treated Mouse Intestine

    Get PDF
    Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains (E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 105 CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 105 CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (103 to 104 CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (106 to 107 CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (/gram of feces). These results confirm that commensal E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine

    Modeling Englacial Radar Attenuation at Siple Dome, West Antarctica, Using Ice Chemistry and Temperature Data

    Get PDF
    The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 +/- 5.7 dB km(-1)) is somewhat lower than the value derived from radar profiles (25.3 +/- 1.1 dB km(-1)). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 +/- 2.2 dB km(-1). This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet

    l-Fucose Stimulates Utilization of d-Ribose by \u3cem\u3eEscherichia coli\u3c/em\u3e MG1655 ΔfucAO and \u3cem\u3eE. coli\u3c/em\u3e Nissle 1917 ΔfucAO Mutants in the Mouse Intestine and in M9 Minimal Medium

    Get PDF
    Escherichia coli MG1655 uses several sugars for growth in the mouse intestine. To determine the roles of l-fucose and d-ribose, an E. coli MG1655 ΔfucAO mutant and an E. coli MG1655 ΔrbsK mutant were fed separately to mice along with wild-type E. coli MG1655. The E. coli MG1655 ΔfucAO mutant colonized the intestine at a level 2 orders of magnitude lower than that of the wild type, but the E. coli MG1655 ΔrbsK mutant and the wild type colonized at nearly identical levels. Surprisingly, an E. coli MG1655 ΔfucAO ΔrbsK mutant was eliminated from the intestine by either wild-type E. coli MG1655 or E. coli MG1655 ΔfucAO, suggesting that the ΔfucAO mutant switches to ribose in vivo. Indeed, in vitro growth experiments showed that l-fucose stimulated utilization of d-ribose by the E. coli MG1655 ΔfucAO mutant but not by an E. coli MG1655 ΔfucK mutant. Since the ΔfucK mutant cannot convert l-fuculose to l-fuculose-1-phosphate, whereas the ΔfucAO mutant accumulates l-fuculose-1-phosphate, the data suggest that l-fuculose-1-phosphate stimulates growth on ribose both in the intestine and in vitro. An E. coli Nissle 1917 ΔfucAO mutant, derived from a human probiotic commensal strain, acted in a manner identical to that of E. coli MG1655 ΔfucAO in vivo and in vitro. Furthermore, l-fucose at a concentration too low to support growth stimulated the utilization of ribose by the wild-type E. coli strains in vitro. Collectively, the data suggest that l-fuculose-1-phosphate plays a role in the regulation of ribose usage as a carbon source by E. coli MG1655 and E. coli Nissle 1917 in the mouse intestine
    • …
    corecore