12 research outputs found

    NanoBRETA Novel BRET Platform for the Analysis of Protein–Protein Interactions

    No full text
    Dynamic interactions between proteins comprise a key mechanism for temporal control of cellular function and thus hold promise for development of novel drug therapies. It remains technically challenging, however, to quantitatively characterize these interactions within the biologically relevant context of living cells. Although, bioluminescence resonance energy transfer (BRET) has often been used for this purpose, its general applicability has been hindered by limited sensitivity and dynamic range. We have addressed this by combining an extremely bright luciferase (Nanoluc) with a means for tagging intracellular proteins with a long-wavelength fluorophore (HaloTag). The small size (19 kDa), high emission intensity, and relatively narrow spectrum (460 nm peak intensity) make Nanoluc luciferase well suited as an energy donor. By selecting an efficient red-emitting fluorophore (635 nm peak intensity) for attachment onto the HaloTag, an overall spectral separation exceeding 175 nm was achieved. This combination of greater light intensity with improved spectral resolution results in substantially increased detection sensitivity and dynamic range over current BRET technologies. Enhanced performance is demonstrated using several established model systems, as well as the ability to image BRET in individual cells. The capabilities are further exhibited in a novel assay developed for analyzing the interactions of bromodomain proteins with chromatin in living cells

    Deciphering the Cellular Targets of Bioactive Compounds Using a Chloroalkane Capture Tag

    No full text
    Phenotypic screening of compound libraries is a significant trend in drug discovery, yet success can be hindered by difficulties in identifying the underlying cellular targets. Current approaches rely on tethering bioactive compounds to a capture tag or surface to allow selective enrichment of interacting proteins for subsequent identification by mass spectrometry. Such methods are often constrained by ineffective capture of low affinity and low abundance targets. In addition, these methods are often not compatible with living cells and therefore cannot be used to verify the pharmacological activity of the tethered compounds. We have developed a novel chloroalkane capture tag that minimally affects compound potency in cultured cells, allowing binding interactions with the targets to occur under conditions relevant to the desired cellular phenotype. Subsequent isolation of the interacting targets is achieved through rapid lysis and capture onto immobilized HaloTag protein. Exchanging the chloroalkane tag for a fluorophore, the putative targets identified by mass spectrometry can be verified for direct binding to the compound through resonance energy transfer. Using the interaction between histone deacetylases (HDACs) and the inhibitor, Vorinostat (SAHA), as a model system, we were able to identify and verify all the known HDAC targets of SAHA as well as two previously undescribed targets, ADO and CPPED1. The discovery of ADO as a target may provide mechanistic insight into a reported connection between SAHA and Huntington’s disease

    Deciphering the Cellular Targets of Bioactive Compounds Using a Chloroalkane Capture Tag

    No full text
    Phenotypic screening of compound libraries is a significant trend in drug discovery, yet success can be hindered by difficulties in identifying the underlying cellular targets. Current approaches rely on tethering bioactive compounds to a capture tag or surface to allow selective enrichment of interacting proteins for subsequent identification by mass spectrometry. Such methods are often constrained by ineffective capture of low affinity and low abundance targets. In addition, these methods are often not compatible with living cells and therefore cannot be used to verify the pharmacological activity of the tethered compounds. We have developed a novel chloroalkane capture tag that minimally affects compound potency in cultured cells, allowing binding interactions with the targets to occur under conditions relevant to the desired cellular phenotype. Subsequent isolation of the interacting targets is achieved through rapid lysis and capture onto immobilized HaloTag protein. Exchanging the chloroalkane tag for a fluorophore, the putative targets identified by mass spectrometry can be verified for direct binding to the compound through resonance energy transfer. Using the interaction between histone deacetylases (HDACs) and the inhibitor, Vorinostat (SAHA), as a model system, we were able to identify and verify all the known HDAC targets of SAHA as well as two previously undescribed targets, ADO and CPPED1. The discovery of ADO as a target may provide mechanistic insight into a reported connection between SAHA and Huntington’s disease

    NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells

    No full text
    Protein-fragment complementation assays (PCAs) are widely used for investigating protein interactions. However, the fragments used are structurally compromised and have not been optimized nor thoroughly characterized for accurately assessing these interactions. We took advantage of the small size and bright luminescence of NanoLuc to engineer a new complementation reporter (NanoBiT). By design, the NanoBiT subunits (i.e., 1.3 kDa peptide, 18 kDa polypeptide) weakly associate so that their assembly into a luminescent complex is dictated by the interaction characteristics of the target proteins onto which they are appended. To ascertain their general suitability for measuring interaction affinities and kinetics, we determined that their intrinsic affinity (<i>K</i><sub>D</sub> = 190 μM) and association constants (<i>k</i><sub>on</sub> = 500 M<sup>–1</sup> s<sup>–1</sup>, <i>k</i><sub>off</sub> = 0.2 s<sup>–1</sup>) are outside of the ranges typical for protein interactions. The accuracy of NanoBiT was verified under defined biochemical conditions using the previously characterized interaction between SME-1 β-lactamase and a set of inhibitor binding proteins. In cells, NanoBiT fusions to FRB/FKBP produced luminescence consistent with the linear characteristics of NanoLuc. Response dynamics, evaluated using both protein kinase A and β-arrestin-2, were rapid, reversible, and robust to temperature (21–37 °C). Finally, NanoBiT provided a means to measure pharmacology of kinase inhibitors known to induce the interaction between BRAF and CRAF. Our results demonstrate that the intrinsic properties of NanoBiT allow accurate representation of protein interactions and that the reporter responds reliably and dynamically in cells

    Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate

    No full text
    Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp <i>Oplophorus gracilirostris</i>, we have improved luminescence expression in mammalian cells ∼2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity ∼150-fold greater than that of either firefly (<i>Photinus pyralis</i>) or <i>Renilla</i> luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 °C or in culture medium for >15 h at 37 °C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes

    Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate

    No full text
    Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp <i>Oplophorus gracilirostris</i>, we have improved luminescence expression in mammalian cells ∼2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity ∼150-fold greater than that of either firefly (<i>Photinus pyralis</i>) or <i>Renilla</i> luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 °C or in culture medium for >15 h at 37 °C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes

    Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate

    No full text
    Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp <i>Oplophorus gracilirostris</i>, we have improved luminescence expression in mammalian cells ∼2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity ∼150-fold greater than that of either firefly (<i>Photinus pyralis</i>) or <i>Renilla</i> luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 °C or in culture medium for >15 h at 37 °C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes

    Validation of HTS hits.

    No full text
    <p>A) Bioluminescence activity of cells treated with MNS was measured at 12 hours post treatment and plotted as fold induction. Experiments were performed at least in triplicates (mean ± SEM). B) Representative western blots for Luciferase, cleaved Caspase 3 and PARP or β-Actin as loading control of D54 cells treated with (25 µM) MNS for 12 hrs. C) Bioluminescence activity of cells treated with increasing concentrations of CV3988 at 12 hours post treatment. Data are plotted as fold induction over values obtained from vehicle treated cells. Experiments were performed in triplicates (mean ± SEM). D and E). Bioluminescence activity was measured at various time points using 1833 (D) or D54 (E) cells treated with CV3988 (12.5 µM), Z-VAD (20 µM) or a combination of Z-VAD plus CV3988 for 24 hrs. Data are plotted as fold induction and experiments were performed in triplicates and plotted as mean ± SEM. F) Representative western blots of Luciferase, Caspase 3, PARP or β-actin were performed on lysates obtained from D54 cells. Cells were either treated with CV3988 (12.5 µM), pre-treated with Z-VAD (20 µM) or treated with Z-VAD and CV3988 for 12 hrs.</p

    Assessing drug sensitivity of rare and transient cell populations.

    No full text
    <p>A) FACS analysis of dissociated D54 cells sorted into CD133<sup>+</sup> and CD133<sup>−</sup> populations, P3 represents the CD133 expressing cell population. B) to E) Bioluminescence assay of CD133<sup>+</sup> and CD133<sup>−</sup> sorted D54 cells incubated with 200 ng/ml TRAIL (B), 50 µM MNS (C), 50 µM MK886 (D) or 12.5 µM GW7647 (E). Bioluminescence was plotted as fold induction over values obtained from vehicle treated cells. Experiments were performed in triplicates and plotted as mean ± SEM. Paired t-test was performed for all experiments and * denotes p<0.05 value at indicated time points.</p

    Utility of Caspase 3/7 GloSensor for assessment of cell death in cells.

    No full text
    <p>A) Schematic of the Caspase 3/7 GloSensor reporter containing an N-terminus coding for the C-Luc domain (358–544) of luciferase and a C-terminus coding for the N-Luc domain (4–354) of luciferase and a adjoining sequence, DEVD, the Caspase 3/7 recognition sequence. B) The functional basis of the reporter, wherein Caspase 3/7 mediated cleavage at the DEVD sequence results in release of the luciferase peptides and reconstitution of the enzymatic activity and an increase in luminescence signal. C) Bioluminescence analysis of cells treated with 200 ng/ml TRAIL. Data is plotted as fold induction standardized to values obtained from vehicle treated cells. D) Western blot for Caspase 3 cleavage using D54 cells treated with TRAIL for 6 hrs. β-Actin was used to standardize loading. E) Bioluminescence analysis of D54 cells treated with varying concentrations (25–100 ng/ml) of an agonist anti-Fas antibody. Data is plotted as fold induction over values obtained from vehicle treated cells at every hour. F) Bioluminescence analysis of cells treated with a pan-Caspase inhibitor Z-VAD (20 µM), 50 µM Docetaxel or with Z-VAD and Docetaxel combined. Data is plotted as fold induction. Experiments were performed at least in triplicates and mean values were plotted ± SEM.</p
    corecore