1,330 research outputs found

    A revised tropical to subtropical paleogene planktonic foraminiferal zonation

    Get PDF
    Author Posting. © Cushman Foundation for Foraminiferal Research, 2005. This article is posted here by permission of Cushman Foundation for Foraminiferal Research for personal use, not for redistribution. The definitive version was published in Journal of Foraminiferal Research 35 (2005): 279-298, doi:10.2113/35.4.279.New biostratigraphic investigations on deep sea cores and outcrop sections have revealed several shortcomings in currently used tropical to subtropical Eocene planktonic foraminiferal zonal schemes in the form of: 1) modified taxonomic concepts, 2) modified/different ranges of taxa, and 3) improved calibrations with magnetostratigraphy. This new information provides us with an opportunity to make some necessary improvements to existing Eocene biostratigraphic schemes. At the same time, we provide an alphanumeric notation for Paleogene zones using the prefix ‘P’ (for Paleocene), ‘E’ (for Eocene) and ‘O’ (for Oligocene) to achieve consistency with recent short-hand notation for other Cenozoic zones (Miocene [’M’], Pliocene [PL] and Pleistocene [PT]). Sixteen Eocene (E) zones are introduced (or nomenclaturally emended) to replace the 13 zones and subzones of Berggren and others (1995). This new zonation serves as a template for the taxonomic and phylogenetic studies in the forthcoming Atlas of Eocene Planktonic Foraminifera (Pearson and others, in press). The 10 zones and subzones of the Paleocene (Berggren and others, 1995) are retained and renamed and/or emended to reflect improved taxonomy and an updated chronologic calibration to the Global Polarity Time Scale (GPTS) (Berggren and others, 2000). The Paleocene/Eocene boundary is correlated with the lowest occurrence (LO) of Acarinina sibaiyaensis (base of Zone E1), at the top of the truncated and redefined (former) Zone P5. The five-fold zonation of the Oligocene (Berggren and others, 1995) is modified to a six-fold zonation with the elevation of (former) Subzones P21a and P21b to zonal status. The Oligocene (O) zonal components are renamed and/or nomenclaturally emended

    Shifting sands: the narrative construction of early career aboriginal teachers' professional identities at the cultural interface

    Get PDF
    This study explores issues facing early career Aboriginal teachers as they construct and enact their personal, professional and situated identities when learning to teach. Narrative constructions of identity simultaneously illuminate and challenge dominant discourses about Aboriginal teachers as they take up, resist and/or reject these discourses. The role of Aboriginality is mediated by factors such as lived experience, positioning of and by the teachers and school contexts. These issues are explored through the theoretical perspectives of Foucault, Bourdieu and Nakata. Like shifting sands, identity construction and teaching work can be unstable terrain, requiring complex contextualised understandings, skills and dispositions. Participants are pre-service Aboriginal teachers in an away-from-base secondary Aboriginal Studies teacher education program at the University of Sydney. They are mature-aged with varying levels of experience of formal education and living in Aboriginal communities. Using narrative methodology, eleven in-depth conversational interviews followed by two focus groups revealed emerging storylines and themes and four participants were identified for further interviews to collaboratively construct the final narratives. This approach privileged participant voices and created spaces to articulate the tacit knowledge and understandings that contribute to the development of a professional identity drawn from personal, professional, cultural and contextual sources. Three themes emerged: discourses of Aboriginality, narratives of belonging, and conceptualising a pedagogical cultural identity. The implications of these themes bring focus to pre-service and in-service teacher professional learning based on valuing Aboriginal community engagement. When nurtured early in a teacher’s career, relationships serve a socio-cultural and political role that contribute significantly to the development of agentic and resilient identities at the cultural interface

    Iterative evolution of digitate planktonic foraminifera

    Get PDF
    Digitate shell morphologies have evolved repeatedly in planktonic foraminifera throughout the Cretaceous and Cenozoic. Digitate species are usually rare in fossil and modern assemblages but show increased abundance and diversity at times during the Cretaceous and mid- dle Eocene. In this paper we discuss the morphology and stratigraphic distribution of digitate planktonic foraminifera and establish the isotopic depth ecology of fossil ones to draw parallels with modern counterparts

    Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change?

    Get PDF
    The temperature of seawater can affect marine plankton in various ways, including by affecting rates of metabolic processes. This can change the way carbon and nutrients are fixed and recycled and hence the chemical and biological profile of the water column. A variety of feedbacks on global climate are possible, especially by altering patterns of uptake and return of carbon dioxide to the atmosphere. Here we summarize and synthesize recent studies in the field of ecology, oceanography and ocean carbon cycling pertaining to possible feedbacks involving metabolic processes. By altering the rates of cellular growth and respiration, temperature-dependency may affect nutrient uptake and food demand in plankton and ultimately the equilibrium of pelagic food webs, with cascade effects on the flux of organic carbon between the upper and inner ocean (the “biological carbon pump”) and the global carbon cycle. Insights from modern ecology can be applied to investigate how temperature-dependent changes in ocean biogeochemical cycling over thousands to millions of years may have shaped the long-term evolution of Earth's climate and life. Investigating temperature-dependency over geological time scales, including through globally warm and cold climate states, can help to identify processes that are relevant for a variety of future scenarios

    Calibration of key temperature-dependent ocean microbial processes in the cGENIE.muffin Earth system model

    Get PDF
    Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of marine carbon cycling, temperature has been long-recognised as a key parameter in the production and export of organic matter at the ocean surface, it is much less commonly taken into account in the ocean interior. There, bacteria (primarily) transform sinking particulate organic matter into its dissolved constituents and thereby consume dissolved oxygen (and/or other electron acceptors such as sulphate) and release nutrients, which are then available for transport back to the surface. Here we present and calibrate a more complete temperature-dependent representation of marine carbon cycling in the cGENIE.muffin Earth system model, intended for both past and future climate applications. In this, we combine a temperature-dependent remineralisation scheme for sinking organic matter with a biological export production scheme that also includes a temperature-dependent limitation on nutrient uptake in surface waters (and hence phytoplankton growth). Via a parameter ensemble, we jointly calibrate the two parameterisations by statistically contrasting model projected fields of nutrients, oxygen, and the stable carbon isotopic signature (δ13C) of dissolved inorganic carbon in the ocean, with modern observations. We find that for the present-day, the temperature-dependent version shows as-good-as or better fit to data than the existing tuned non-temperature dependent version of the cGENIE.muffin. The main impact of adding temperature-dependent remineralisation is in driving higher rates of remineralisation in warmer waters and hence a more rapid return of nutrients to the surface there – stimulating organic matter production. As a result, more organic matter is exported below 80 m in mid and low latitude warmer waters as compared to the standard model. Conversely, at higher latitudes, colder water temperature reduces the rate of nutrient supply to the surface as a result of slower in-situ rates of remineralisation. We also assess the implications of including a more complete set of temperature-dependent parameterisations by analysing a series of historical transient experiments. We find that between the pre-industrial and the present day, in response to a simulated air temperature increase of 0.9 °C and ocean warming of 0.12 °C (0.6 °C in surface waters and 0.02 °C in deep waters), a reduction in POC export at 80 m of just 0.3 % occurs. In contrast, with no assumed temperature-dependent biological processes, global POC export at 80 m falls by 2.9 % between the pre-industrial and present day as a consequence of ocean stratification and reduced nutrient supply to the surface. This suggests that increased nutrient recycling in warmer conditions offsets some of the stratification-induced surface nutrient limitation in a warmer world, and that less carbon (and nutrients) then reaches the inner and deep ocean. This extension to the cGENIE.muffin Earth system model provides it with additional capabilities in addressing marine carbon cycling in warmer past and future worlds

    Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera

    Get PDF
    We describe Globigerinoides rublobatus n. sp., a new morphospecies of fossil planktonic foraminifera, from the Pleistocene sediments (∼810 ka) of the Indian Ocean and Pacific Ocean. We use image analysis and morphometry of 860 specimens from International Ocean Discovery Program Site U1483 in the tropical Indian Ocean to document morphological variability in the new morphospecies and related taxa, and we also report it from Pacific Ocean Site U1486 for the first time. The new morphospecies combines characteristics typical of Globigerinoides conglobatus (Brady, 1879) and Globigerinoides ruber (d'Orbigny, 1839), with which it co-occurs, but is distinct from both. Morphometric data indicate that G. rublobatus n. sp. is closer to G. conglobatus, potentially signalling an evolutionary affinity. We find that Globigerinoides rublobatus n. sp. occurs as two variants, a pigmented (pink) form and a non-pigmented (white) form. The non-pigmented forms are on average ∼50 % larger than the pigmented forms. This is so far only the third instance of fossil planktonic foraminifera known to exhibit this pink pigmentation. We regard the pink and white forms as variants of a single morphospecies and suggest the pink form may represent a later evolutionary adaptation
    corecore