4 research outputs found

    Identification and Optimization of Benzimidazole Sulfonamides as Orally Bioavailable Sphingosine 1‑Phosphate Receptor 1 Antagonists with in Vivo Activity

    No full text
    We report here a novel series of benzimidazole sulfonamides that act as antagonists of the S1P<sub>1</sub> receptor, identified by exploiting an understanding of the pharmacophore of a high throughput screening (HTS)-derived series of compounds described previously. Lead compound <b>2</b> potently inhibits S1P-induced receptor internalization in a cell-based assay (EC<sub>50</sub> = 0.05 μM), but has poor physical properties and metabolic stability. Evolution of this compound through structure–activity relationship development and property optimization led to <i>in vivo</i> probes such as <b>4</b>. However, this compound was unexpectedly found to be a potent CYP3A inducer in human hepatocytes, and thus further chemistry efforts were directed at addressing this liability. By employing a pregnane X receptor (PXR) reporter gene assay to prioritize compounds for further testing in human hepatocytes, we identified lipophilicity as a key molecular property influencing the likelihood of P450 induction. Ultimately, we have identified compounds such as <b>46</b> and <b>47</b>, which demonstrate the desired S1P<sub>1</sub> antagonist activity while having greatly reduced risk of CYP3A induction in humans. These compounds have excellent oral bioavailability in preclinical species and exhibit pharmacodynamic effects of S1P<sub>1</sub> antagonism in several <i>in vivo</i> models following oral dosing. Relatively modest antitumor activity was observed in multiple xenograft models, however, suggesting that selective S1P<sub>1</sub> antagonists would have limited utility as anticancer therapeutics as single agents

    Identification and Optimization of Benzimidazole Sulfonamides as Orally Bioavailable Sphingosine 1‑Phosphate Receptor 1 Antagonists with in Vivo Activity

    No full text
    We report here a novel series of benzimidazole sulfonamides that act as antagonists of the S1P<sub>1</sub> receptor, identified by exploiting an understanding of the pharmacophore of a high throughput screening (HTS)-derived series of compounds described previously. Lead compound <b>2</b> potently inhibits S1P-induced receptor internalization in a cell-based assay (EC<sub>50</sub> = 0.05 μM), but has poor physical properties and metabolic stability. Evolution of this compound through structure–activity relationship development and property optimization led to <i>in vivo</i> probes such as <b>4</b>. However, this compound was unexpectedly found to be a potent CYP3A inducer in human hepatocytes, and thus further chemistry efforts were directed at addressing this liability. By employing a pregnane X receptor (PXR) reporter gene assay to prioritize compounds for further testing in human hepatocytes, we identified lipophilicity as a key molecular property influencing the likelihood of P450 induction. Ultimately, we have identified compounds such as <b>46</b> and <b>47</b>, which demonstrate the desired S1P<sub>1</sub> antagonist activity while having greatly reduced risk of CYP3A induction in humans. These compounds have excellent oral bioavailability in preclinical species and exhibit pharmacodynamic effects of S1P<sub>1</sub> antagonism in several <i>in vivo</i> models following oral dosing. Relatively modest antitumor activity was observed in multiple xenograft models, however, suggesting that selective S1P<sub>1</sub> antagonists would have limited utility as anticancer therapeutics as single agents

    Discovery and Optimization of a Novel Series of Potent Mutant B‑Raf<sup>V600E</sup> Selective Kinase Inhibitors

    No full text
    B-Raf represents an attractive target for anticancer therapy and the development of small molecule B-Raf inhibitors has delivered new therapies for metastatic melanoma patients. We have discovered a novel class of small molecules that inhibit mutant B-Raf<sup>V600E</sup> kinase activity both in vitro and in vivo. Investigations into the structure–activity relationships of the series are presented along with efforts to improve upon the cellular potency, solubility, and pharmacokinetic profile. Compounds selectively inhibited B-Raf<sup>V600E</sup> in vitro and showed preferential antiproliferative activity in mutant B-Raf<sup>V600E</sup> cell lines and exhibited selectivity in a kinase panel against other kinases. Examples from this series inhibit growth of a B-Raf<sup>V600E</sup> A375 xenograft in vivo at a well-tolerated dose. In addition, aminoquinazolines described herein were shown to display pERK elevation in nonmutant B-Raf cell lines in vitro

    Discovery and Optimization of a Novel Series of Highly Selective JAK1 Kinase Inhibitors

    No full text
    Janus kinases (JAKs) have been demonstrated to be critical in cytokine signaling and have thus been implicated in both cancer and inflammatory diseases. The JAK family consists of four highly homologous members: JAK1–3 and TYK2. The development of small-molecule inhibitors that are selective for a specific family member would represent highly desirable tools for deconvoluting the intricacies of JAK family biology. Herein, we report the discovery of a potent JAK1 inhibitor, 24, which displays ∼1000-fold selectivity over the other highly homologous JAK family members (determined by biochemical assays), while also possessing good selectivity over other kinases (determined by panel screening). Moreover, this compound was demonstrated to be orally bioavailable and possesses acceptable pharmacokinetic parameters. In an in vivo study, the compound was observed to dose dependently modulate the phosphorylation of STAT3 (a downstream marker of JAK1 inhibition)
    corecore