31 research outputs found

    Response to gefitinib and erlotinib in Non-small cell lung cancer: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Non-small cell lung cancer (NSCLC), an overactive epidermal growth factor receptor (EGFR) pathway is a component of the malignant phenotype. Two tyrosine kinase inhibitors (TKIs) of EGFR, gefinitib and erlotinib, have been used with variable benefit.</p> <p>Methods</p> <p>We have analyzed outcome data of a population of NSCLC patients that received these TKIs to determine the benefit derived and to define the clinical and molecular parameters that correlate with response. Tumor tissue from a subgroup of these patients was analyzed by immunohistochemistry to measure the expression level of EGFR and four activated (phosphorylated) members of the pathway, pEGFR, pERK, pAKT, and pSTAT3.</p> <p>Results</p> <p>Erlotinib was slightly superior to gefitinib in all measures of response, although the differences were not statistically significant. The most robust clinical predictors of time to progression (TTP) were best response and rash (p < 0.0001). A higher level of pEGFR was associated with longer TTP, while the total EGFR level was not associated with response. Higher levels of pAKT and pSTAT3 were also associated with longer TTP. In contrast, a higher level of pERK1/2 was associated with shorter TTP.</p> <p>Conclusion</p> <p>These observations suggest the hypothesis that tumor cells that have activated EGFR pathways, presumably being utilized for survival, are clinically relevant targets for pathway inhibition. An accurate molecular predictive model of TKI response should include activated members of the EGFR pathway. TKIs may be best reserved for tumors expressing pEGFR and pAKT or pSTAT, and little pERK. In the absence of molecular predictors of response, the appearance of a rash and a positive first scan are good clinical indicators of response.</p

    Medulloblastoma Exome Sequencing Uncovers Subtype-Specific Somatic Mutations

    Get PDF
    Medulloblastomas are the most common malignant brain tumors in children1. Identifying and understanding the genetic events that drive these tumors is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma based on transcriptional and copy number profiles2–5. Here, we utilized whole exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas exhibit low mutation rates consistent with other pediatric tumors, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR, and LDB1, novel findings in medulloblastoma. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant but not wild type beta-catenin. Together, our study reveals the alteration of Wnt, Hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signaling in medulloblastoma

    Mucopolysaccharidosis VI

    Get PDF
    Mucopolysaccharidosis VI (MPS VI) is a lysosomal storage disease with progressive multisystem involvement, associated with a deficiency of arylsulfatase B leading to the accumulation of dermatan sulfate. Birth prevalence is between 1 in 43,261 and 1 in 1,505,160 live births. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The characteristic skeletal dysplasia includes short stature, dysostosis multiplex and degenerative joint disease. Rapidly progressing forms may have onset from birth, elevated urinary glycosaminoglycans (generally >100 μg/mg creatinine), severe dysostosis multiplex, short stature, and death before the 2nd or 3rd decades. A more slowly progressing form has been described as having later onset, mildly elevated glycosaminoglycans (generally <100 μg/mg creatinine), mild dysostosis multiplex, with death in the 4th or 5th decades. Other clinical findings may include cardiac valve disease, reduced pulmonary function, hepatosplenomegaly, sinusitis, otitis media, hearing loss, sleep apnea, corneal clouding, carpal tunnel disease, and inguinal or umbilical hernia. Although intellectual deficit is generally absent in MPS VI, central nervous system findings may include cervical cord compression caused by cervical spinal instability, meningeal thickening and/or bony stenosis, communicating hydrocephalus, optic nerve atrophy and blindness. The disorder is transmitted in an autosomal recessive manner and is caused by mutations in the ARSB gene, located in chromosome 5 (5q13-5q14). Over 130 ARSB mutations have been reported, causing absent or reduced arylsulfatase B (N-acetylgalactosamine 4-sulfatase) activity and interrupted dermatan sulfate and chondroitin sulfate degradation. Diagnosis generally requires evidence of clinical phenotype, arylsulfatase B enzyme activity <10% of the lower limit of normal in cultured fibroblasts or isolated leukocytes, and demonstration of a normal activity of a different sulfatase enzyme (to exclude multiple sulfatase deficiency). The finding of elevated urinary dermatan sulfate with the absence of heparan sulfate is supportive. In addition to multiple sulfatase deficiency, the differential diagnosis should also include other forms of MPS (MPS I, II IVA, VII), sialidosis and mucolipidosis. Before enzyme replacement therapy (ERT) with galsulfase (Naglazyme®), clinical management was limited to supportive care and hematopoietic stem cell transplantation. Galsulfase is now widely available and is a specific therapy providing improved endurance with an acceptable safety profile. Prognosis is variable depending on the age of onset, rate of disease progression, age at initiation of ERT and on the quality of the medical care provided

    Genome-scale functional genomics identify genes preferentially essential for multiple myeloma cells compared to other neoplasias

    No full text
    Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been driven by therapies that have limited applications beyond MM/PC neoplasias and do not target specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology yet largely dispensable for malignant or normal cells of most other lineages. Here we systematically characterized the lineage-preferential molecular dependencies of MM through genome-scale clustered regularly interspaced short palindromic repeats (CRISPR) studies in 19 MM versus hundreds of non-MM lines and identified 116 genes whose disruption more significantly affects MM cell fitness compared with other malignancies. These genes, some known, others not previously linked to MM, encode transcription factors, chromatin modifiers, endoplasmic reticulum components, metabolic regulators or signaling molecules. Most of these genes are not among the top amplified, overexpressed or mutated in MM. Functional genomics approaches thus define new therapeutic targets in MM not readily identifiable by standard genomic, transcriptional or epigenetic profiling analyses
    corecore