31 research outputs found

    Preliminary Findings of the High Quantity of Microplastics in Faeces of Hong Kong Residents

    Get PDF
    Microplastics are recognised as a ubiquitous and hazardous pollutant worldwide. These small-sized particles have been detected in human faeces collected from a number of cities, providing evidence of human ingestion of microplastics and their presence in the gastrointestinal tract. Here, using Raman spectroscopy, we identified an average of 50 particles g−1 (20.4–138.9 particles g−1 wet weight) in faeces collected from a healthy cohort in Hong Kong. This quantity was about five times higher than the values reported in other places in Asia and Europe. Polystyrene was the most abundant polymer type found in the faeces, followed by polypropylene and polyethylene. These particles were primarily fragments, but about two-thirds of the detected polyethylene terephthalate were fibres. More than 88% of the microplastics were smaller than 300 µm in size. Our study provides the first data on the faecal level, and thus the extent of ingestion, of microplastics in Hong Kong’s population. This timely assessment is crucial and supports the recently estimated ingestion rate of microplastics by Hong Kong residents through seafood consumption, which is one of the highest worldwide. These findings may be applicable to other coastal populations in South China with similar eating habits

    Influenza Polymerase Activity Correlates with the Strength of Interaction between Nucleoprotein and PB2 through the Host-Specific Residue K/E627

    Get PDF
    The ribonucleoprotein (RNP) complex is the essential transcription-replication machinery of the influenza virus. It is composed of the trimeric polymerase (PA, PB1 and PB2), nucleoprotein (NP) and RNA. Elucidating the molecular mechanisms of RNP assembly is central to our understanding of the control of viral transcription and replication and the dependence of these processes on the host cell. In this report, we show, by RNP reconstitution assays and co-immunoprecipitation, that the interaction between NP and polymerase is crucial for the function of the RNP. The functional association of NP and polymerase involves the C-terminal ‘627’ domain of PB2 and it requires NP arginine-150 and either lysine-627 or arginine-630 of PB2. Using surface plasmon resonance, we demonstrate that the interaction between NP and PB2 takes place without the involvement of RNA. At 33, 37 and 41°C in mammalian cells, more positive charges at aa. 627 and 630 of PB2 lead to stronger NP-polymerase interaction, which directly correlates with the higher RNP activity. In conclusion, our study provides new information on the NP-PB2 interaction and shows that the strength of NP-polymerase interaction and the resulting RNP activity are promoted by the positive charges at aa. 627 and 630 of PB2

    Review of the Standard and Advanced Screening, Staging Systems and Treatment Modalities for Cervical Cancer

    No full text
    Cancer arising from the uterine cervix is the fourth most common cause of cancer death among women worldwide. Almost 90% of cervical cancer mortality has occurred in low- and middle-income countries. One of the major aetiologies contributing to cervical cancer is the persistent infection by the cancer-causing types of the human papillomavirus. The disease is preventable if the premalignant lesion is detected early and managed effectively. In this review, we outlined the standard guidelines that have been introduced and implemented worldwide for decades, including the cytology, the HPV detection and genotyping, and the immunostaining of surrogate markers. In addition, the staging system used to classify the premalignancy and malignancy of the uterine cervix, as well as the safety and efficacy of the various treatment modalities in clinical trials for cervical cancers, are also discussed. In this millennial world, the advancements in computer-aided technology, including robotic modules and artificial intelligence (AI), are also incorporated into the screening, diagnostic, and treatment platforms. These innovations reduce the dependence on specialists and technologists, as well as the work burden and time incurred for sample processing. However, concerns over the practicality of these advancements remain, due to the high cost, lack of flexibility, and the judgment of a trained professional that is currently not replaceable by a machine

    Optimal gender-specific age for cost-effective vaccination with adjuvanted herpes zoster subunit vaccine in Chinese adults.

    No full text
    BackgroundAdjuvanted herpes zoster (HZ) subunit (HZ/su) vaccine is recommended for healthy adults aged ≥50 years, yet vaccine efficacy is expected to wane over time. Age-sex specific cost-effectiveness analyses of HZ/su vaccine are warranted to inform decision-making on vaccine policy. We aimed to determine the optimal gender-specific age for cost-effective HZ/su vaccination in Hong Kong.MethodsA Markov model was used to compare outcomes with and without HZ/su in healthy males and females at age 50-80 years. Model outcome measures were total cost, HZ cases, and HZ-associated quality-adjusted life-years (QALYs) loss. Incremental cost per QALY saved (ICER) by HZ/su was estimated for each age-sex group. Sensitivity analyses were performed to examine robustness of model results.ResultsHZ/su reduced incidence of HZ in both males and females aged 50-80 years and the numbers needed to vaccinate to avoid one HZ case were lowest at age 60 years for males (6.05) and females (5.50). The highest QALY-saved occurred in females (0.00396 QALYs) and males (0.00379 QALYs) who were vaccinated at 60 years old. The ICERs were lowest at age 60-70 years for both genders. Using 1× gross domestic product per capita of Hong Kong (USD46,153) as willingness-to-pay threshold, HZ/su vaccine was accepted to be cost-effective for all female and male age groups at vaccine cost = USD160, for female aged 50-79 years and male aged 54-74 years at vaccine cost = USD200, and for female aged 59-71 years at vaccine cost = USD240.ConclusionsHZ/su vaccine is more likely to be cost-effective for males and females aged between 60-70 years than the extreme age groups (less than 60 years and older than 70 years) in Hong Kong. The age range for cost-effective acceptance of HZ/su vaccine appears to be broader in females than males given the same vaccine cost and willingness-to-pay threshold

    Chemopreventive Role of Apigenin against the Synergistic Carcinogenesis of Human Papillomavirus and 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone

    No full text
    Tobacco smoke and human papillomavirus (HPV) are both crucial causes of cancer, and their cooperative carcinogenesis has drawn more attention in recent years. Apigenin (AP), a typical flavonoid abundantly found in flowers of plants, vegetables, and fruits, has been demonstrated to exert an anti-carcinogenic effect on various types of cancer. In this study, we investigated the capability of AP against malignant transformation and DNA damage of immortalized human esophageal epithelial (SHEE) cells induced by the synergism of HPV18 and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The results indicated that the enhancement of migration, invasion, and proliferation ability of SHEE cells induced by HPV and NNK could be effectively inhibited by AP. Moreover, the levels of pyridyloxybutylated (POB)-DNA adducts induced by NNK via P450-catalyzed metabolic activation could also be significantly suppressed by AP. Further analyses on the molecular mechanism revealed that AP inhibited the synergistic carcinogenesis of NNK and HPV on SHEE cells by reducing the expression of mutp53, CDK4, Cyclin D1, and p-Rb (Ser 780), increasing caspase-3 activity, thereby arresting the cell cycle at G1 phase and promoting apoptosis of SHEE cells. We hypothesize that the decrease in NNK-induced POB-DNA adduct levels is related to the deactivation of P450 by AP, which needs to be confirmed in future studies. This study highlights that AP may be employed as a promising chemopreventive agent against cancers in smokers with an HPV infection

    Interaction between Human Papillomavirus-Encoded E6 Protein and AurB Induces Cell Immortalization and Proliferation—A Potential Target of Intervention

    No full text
    The human papillomavirus E6 and E7 oncoproteins interact with a different subset of host proteins, leading to dysregulation of the apoptotic, cell cycle, and signaling pathways. In this study, we identified, for the first time, that Aurora kinase B (AurB) is a bona fide interacting partner of E6. We systematically characterized the AurB-E6 complex formation and its consequences in carcinogenesis using a series of in vitro and cell-based assays. We also assessed the efficacy of Aurora kinase inhibitors in halting HPV-mediated carcinogenesis using in vitro and in vivo models. We showed that AurB activity was elevated in HPV-positive cells, and this correlated positively with the E6 protein level. E6 interacted directly with AurB in the nucleus or mitotic cells. A previously unidentified region of E6, located upstream of C-terminal E6-PBM, was important for AurB-E6 complex formation. AurB-E6 complex led to reduced AurB kinase activity. However, the AurB-E6 complex increased the hTERT protein level and its telomerase activity. On the other hand, AurB inhibition led to the inhibition of telomerase activity, cell proliferation, and tumor formation, even though this may occur in an HPV-independent manner. In summary, this study dissected the molecular mechanism of how E6 recruits AurB to induce cell immortalization and proliferation, leading to the eventual cancer development. Our findings revealed that the treatment of AZD1152 exerted a non-specific anti-tumor effect. Hence, a continuous effort to seek a specific and selective inhibitor that can halt HPV-mediated carcinogenesis should be warranted

    Functional Analysis of the Influenza Virus H5N1 Nucleoprotein Tail Loop Reveals Amino Acids That Are Crucial for Oligomerization and Ribonucleoprotein Activities â–¿

    No full text
    Homo-oligomerization of the nucleoprotein (NP) of influenza A virus is crucial for providing a major structural framework for the assembly of viral ribonucleoprotein (RNP) particles. The nucleoprotein is also essential for transcription and replication during the virus life cycle. In the H5N1 NP structure, the tail loop region is important for NP to form oligomers. Here, by an RNP reconstitution assay, we identified eight NP mutants that had different degrees of defects in forming functional RNPs, with the RNP activities of four mutants being totally abolished (E339A, V408S P410S, R416A, and L418S P419S mutants) and the RNP activities of the other four mutants being more than 50% decreased (R267A, I406S, R422A, and E449A mutants). Further characterization by static light scattering showed that the totally defective protein variants existed as monomers in vitro, deviating from the trimeric/oligomeric form of wild-type NP. The I406S, R422A, and E449A variants existed as a mixture of unstable oligomers, thus resulting in a reduction of RNP activity. Although the R267A variant existed as a monomer in vitro, it resumed an oligomeric form upon the addition of RNA and retained a certain degree of RNP activity. Our data suggest that there are three factors that govern the NP oligomerization event: (i) interaction between the tail loop and the insertion groove, (ii) maintenance of the tail loop conformation, and (iii) stabilization of the NP homo-oligomer. The work presented here provides information for the design of NP inhibitors for combating influenza virus infection
    corecore