119 research outputs found
The Ets dominant repressor En/Erm enhances intestinal epithelial tumorigenesis in ApcMin mice
<p>Abstract</p> <p>Background</p> <p>Ets transcription factors have been widely implicated in the control of tumorigenesis, with most studies suggesting tumor-promoting roles. However, few studies have examined Ets tumorigenesis-modifying functions <it>in vivo </it>using model genetic systems.</p> <p>Methods</p> <p>Using mice expressing a previously characterized Ets dominant repressor transgene in the intestinal epithelium (Villin-En/Erm), we examined the consequences of blocking endogenous Ets-mediated transcriptional activation on tumorigenesis in the Apc<sup>Min </sup>model of intestinal carcinoma.</p> <p>Results</p> <p>En/Erm expression in the intestine, at levels not associated with overt crypt-villus dysmorphogenesis, results in a marked increase in tumor number in Apc<sup>Min </sup>animals. Moreover, when examined histologically, tumors from En/Erm-expressing animals show a trend toward greater stromal invasiveness. Detailed analysis of crypt-villus homeostasis in these En/Erm transgenic animals suggests increased epithelial turnover as one possible mechanism for the enhanced tumorigenesis.</p> <p>Conclusion</p> <p>Our findings provide <it>in vivo </it>evidence for a tumor-restricting function of endogenous Ets factors in the intestinal epithelium.</p
Layer-specific changes of KCC2 and NKCC1 in the mouse dentate gyrus after entorhinal denervation
The cation-chloride cotransporters KCC2 and NKCC1 regulate the intracellular Cl− concentration and cell volume of neurons and/or glia. The Cl− extruder KCC2 is expressed at higher levels than the Cl− transporter NKCC1 in mature compared to immature neurons, accounting for the developmental shift from high to low Cl− concentration and from depolarizing to hyperpolarizing currents through GABA-A receptors. Previous studies have shown that KCC2 expression is downregulated following central nervous system injury, returning neurons to a more excitable state, which can be pathological or adaptive. Here, we show that deafferentation of the dendritic segments of granule cells in the outer (oml) and middle (mml) molecular layer of the dentate gyrus via entorhinal denervation in vivo leads to cell-type- and layer-specific changes in the expression of KCC2 and NKCC1. Microarray analysis validated by reverse transcription-quantitative polymerase chain reaction revealed a significant decrease in Kcc2 mRNA in the granule cell layer 7 days post-lesion. In contrast, Nkcc1 mRNA was upregulated in the oml/mml at this time point. Immunostaining revealed a selective reduction in KCC2 protein expression in the denervated dendrites of granule cells and an increase in NKCC1 expression in reactive astrocytes in the oml/mml. The NKCC1 upregulation is likely related to the increased activity of astrocytes and/or microglia in the deafferented region, while the transient KCC2 downregulation in granule cells may be associated with denervation-induced spine loss, potentially also serving a homeostatic role via boosting GABAergic depolarization. Furthermore, the delayed KCC2 recovery might be involved in the subsequent compensatory spinogenesis
Research and demonstration updates: ISU Rhodes Research Farm and PFI on-farm cooperator data
A recently completed study compared the economic return of hooped buildings versus conventional facilities. Factors considered included pig growth rate, feed efficiency, developing growth function, distrib-qtion of growth, production costs and returns, and rate of return on investment
Vascular endothelial growth factor C promotes breast cancer progression via a novel antioxidant mechanism that involves regulation of superoxide dismutase 3
Abstract Introduction Triple-negative breast cancers, particularly the claudin-low subtype, are highly aggressive and exhibit increased tumor-initiating cell (TIC) characteristics. In this study, we demonstrate that vascular endothelial growth factor C (VEGF-C) is highly expressed in the claudin-low breast cancer subtype and also that it mediates tumor progression, not only through its role in lymphangiogenesis but also through regulating TIC characteristics and the response to reactive oxygen species (ROS). Methods VEGF C expression was examined in breast cancer subtypes, and a VEGF C expression signature was derived. VEGF C expression and/or its associated signature was correlated with TIC and chemoresistance signatures. In vitro and in vivo assays were performed to determine whether VEGF-C expression alters TIC characteristics and the response of breast cancer cells to chemotherapy and oxidative stress. Array analysis was used to identify a downstream effector of VEGF-C, superoxide dismutase 3 (Sod3), which was tested for its involvement in VEGF-C-mediated resistance to oxidative stress and enhancement of in vivo metastasis. The VEGF-C-associated receptor neuropilin 2 (Nrp2) was knocked down to determine whether it is required for the observed effects of VEGF-C. Expression of VEGF C and Sod3 was assessed in human breast cancers. Results VEGF C is highly expressed in claudin-low breast cancers, and VEGF C and the VEGF C signature are associated with TIC-related gene signatures. VEGF-C-knockdown in mammary carcinoma cells decreases TIC properties in vitro and in vivo, sensitizing cells to oxidative stress and chemotherapy. We identified Sod3 as a target of VEGF-C in breast cancer cells by demonstrating that it is required for VEGF-C-mediated cell survival in response to oxidative stress and for VEGF-C-mediated metastasis. We demonstrate that Nrp2 is the VEGF-C-associated receptor that mediates alterations in Sod3 expression and the response of tumor cells to oxidative stress. We show that VEGF C and Sod3 are positively associated in human breast cancer. Conclusions We describe a novel mechanism by which VEGF-C contributes to metastasis via its ability to enhance TIC-associated characteristics, particularly the response to ROS. We identified Sod3 as a critical mediator of VEGF-C-induced metastasis, and we provide evidence that the VEGF-C-Sod3 axis plays a role in human breast cancers
G2A Signaling Dampens Colitic Inflammation via Production of IFN-γ
Proinflammatory consequences have been described for lysophosphatidylcholine, a lipid product of cellular injury, signaling via the
G protein–coupled receptor G2A on myeloid and lymphoid inflammatory cells. This prompted the hypothesis that genetic deletion
of G2A would limit intestinal inflammation in a mouse model of colitis induced by dextran sodium sulfate. Surprisingly, G2A2/2
mice exhibited significantly worsened colitis compared with wild-type mice, as demonstrated by disease activity, colon shortening,
histology, and elevated IL-6 and IL-5 in colon tissues. Investigation of inflammatory cells recruited to inflamed G2A2/2 colons
showed significantly more TNF-a+ and Ly6ChiMHCII2 proinflammatory monocytes and eosinophils than in wild-type colons.
Both monocytes and eosinophils were pathogenic as their depletion abolished the excess inflammation in G2A2/2 mice. G2A2/2
mice also had less IFN-g in inflamed colon tissues than wild-type mice. Fewer CD4+ lymphocytes were recruited to inflamed
G2A2/2 colons, and fewer colonic lymphocytes produced IFN-g upon ex vivo stimulation. Administration of IFN-g to G2A2/2
mice during dextran sodium sulfate exposure abolished the excess colitic inflammation and reduced colonic IL-5 and eosinophil
numbers to levels seen in wild-type mice. Furthermore, IFN-g reduced the numbers of TNF-a+ monocyte and enhanced their
maturation from Ly6ChiMHCII2 to Ly6CintMHCII+
. Taken together, the data suggest that G2A signaling serves to dampen
intestinal inflammation via the production of IFN-g, which, in turn, enhances monocyte maturation to a less inflammatory
program and ultimately reduces eosinophil-induced injury of colonic tissues
Diverse Intestinal Bacteria Contain Putative Zwitterionic Capsular Polysaccharides with Anti-inflammatory Properties
Zwitterionic capsular polysaccharides (ZPSs) are bacterial products that modulate T cells, including inducing anti-inflammatory IL-10-secreting T regulatory cells (Tregs). However, only a few diverse bacteria are known to modulate the host immune system via ZPS. We present a genomic screen for bacteria encoding ZPS molecules. We identify diverse host-associated bacteria, including commensals and pathogens with known anti-inflammatory properties, with the capacity to produce ZPSs. Human mononuclear cells stimulated with lysates from putative ZPS-producing bacteria induce significantly greater IL-10 production and higher proportions of Tregs than lysates from non-ZPS-encoding relatives or a commensal strain of Bacteroides cellulosilyticus in which a putative ZPS biosynthetic operon was genetically disrupted. Similarly, wild-type B. cellulosilyticus DSM 14838, but not a close relative lacking a putative ZPS, attenuated experimental colitis in mice. Collectively, this screen identifies bacterial strains that may use ZPSs to interact with the host as well as those with potential probiotic properties
Expression of Six1 in luminal breast cancers predicts poor prognosis and promotes increases in tumor initiating cells by activation of extracellular signal-regulated kinase and transforming growth factor-beta signaling pathways
Abstract Introduction Mammary-specific overexpression of Six1 in mice induces tumors that resemble human breast cancer, some having undergone epithelial to mesenchymal transition (EMT) and exhibiting stem/progenitor cell features. Six1 overexpression in human breast cancer cells promotes EMT and metastatic dissemination. We hypothesized that Six1 plays a role in the tumor initiating cell (TIC) population specifically in certain subtypes of breast cancer, and that by understanding its mechanism of action, we could potentially develop new means to target TICs. Methods We examined gene expression datasets to determine the breast cancer subtypes with Six1 overexpression, and then examined its expression in the CD24low/CD44+ putative TIC population in human luminal breast cancers xenografted through mice and in luminal breast cancer cell lines. Six1 overexpression, or knockdown, was performed in different systems to examine how Six1 levels affect TIC characteristics, using gene expression and flow cytometric analysis, tumorsphere assays, and in vivo TIC assays in immunocompromised and immune-competent mice. We examined the molecular pathways by which Six1 influences TICs using genetic/inhibitor approaches in vitro and in vivo. Finally, we examined the expression of Six1 and phosphorylated extracellular signal-regulated kinase (p-ERK) in human breast cancers. Results High levels of Six1 are associated with adverse outcomes in luminal breast cancers, particularly the luminal B subtype. Six1 levels are enriched in the CD24low/CD44+ TIC population in human luminal breast cancers xenografted through mice, and in tumorsphere cultures in MCF7 and T47D luminal breast cancer cells. When overexpressed in MCF7 cells, Six1expands the TIC population through activation of transforming growth factor-beta (TGF-β) and mitogen activated protein kinase (MEK)/ERK signaling. Inhibition of ERK signaling in MCF7-Six1 cells with MEK1/2 inhibitors, U0126 and AZD6244, restores the TIC population of luminal breast cancer cells back to that observed in control cells. Administration of AZD6244 dramatically inhibits tumor formation efficiency and metastasis in cells that express high levels of Six1 ectopically or endogenously. Finally, we demonstrate that Six1 significantly correlates with phosphorylated ERK in human breast cancers. Conclusions Six1 plays an important role in the TIC population in luminal breast cancers and induces a TIC phenotype by enhancing both TGF-β and ERK signaling. MEK1/2 kinase inhibitors are potential candidates for targeting TICs in breast tumors
Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide
INTRODUCTION: The androgen receptor (AR) is widely expressed in breast cancers and has been proposed as a therapeutic target in estrogen receptor alpha (ER) negative breast cancers that retain AR. However, controversy exists regarding the role of AR, particularly in ER + tumors. Enzalutamide, an AR inhibitor that impairs nuclear localization of AR, was used to elucidate the role of AR in preclinical models of ER positive and negative breast cancer. METHODS: We examined nuclear AR to ER protein ratios in primary breast cancers in relation to response to endocrine therapy. The effects of AR inhibition with enzalutamide were examined in vitro and in preclinical models of ER positive and negative breast cancer that express AR. RESULTS: In a cohort of 192 women with ER + breast cancers, a high ratio of AR:ER (≥2.0) indicated an over four fold increased risk for failure while on tamoxifen (HR = 4.43). The AR:ER ratio had an independent effect on risk for failure above ER % staining alone. AR:ER ratio is also an independent predictor of disease-free survival (HR = 4.04, 95% CI: 1.68, 9.69; p = 0.002) and disease specific survival (HR = 2.75, 95% CI: 1.11, 6.86; p = 0.03). Both enzalutamide and bicalutamide inhibited 5-alpha-dihydrotestosterone (DHT)-mediated proliferation of breast cancer lines in vitro; however, enzalutamide uniquely inhibited estradiol (E2)-mediated proliferation of ER+/AR + breast cancer cells. In MCF7 xenografts (ER+/AR+) enzalutamide inhibited E2-driven tumor growth as effectively as tamoxifen by decreasing proliferation. Enzalutamide also inhibited DHT- driven tumor growth in both ER positive (MCF7) and negative (MDA-MB-453) xenografts, but did so by increasing apoptosis. CONCLUSIONS: AR to ER ratio may influence breast cancer response to traditional endocrine therapy. Enzalutamide elicits different effects on E2-mediated breast cancer cell proliferation than bicalutamide. This preclinical study supports the initiation of clinical studies evaluating enzalutamide for treatment of AR(+) tumors regardless of ER status, since it blocks both androgen- and estrogen- mediated tumor growth
Diverse Intestinal Bacteria Contain Putative Zwitterionic Capsular Polysaccharides with Anti-inflammatory Properties
Zwitterionic capsular polysaccharides (ZPSs) are bacterial products that modulate T cells, including inducing anti-inflammatory IL-10-secreting T regulatory cells (Tregs). However, only a few diverse bacteria are known to modulate the host immune system via ZPS. We present a genomic screen for bacteria encoding ZPS molecules. We identify diverse host-associated bacteria, including commensals and pathogens with known anti-inflammatory properties, with the capacity to produce ZPSs. Human mononuclear cells stimulated with lysates from putative ZPS-producing bacteria induce significantly greater IL-10 production and higher proportions of Tregs than lysates from non-ZPS-encoding relatives or a commensal strain of Bacteroides cellulosilyticus in which a putative ZPS biosynthetic operon was genetically disrupted. Similarly, wild-type B. cellulosilyticus DSM 14838, but not a close relative lacking a putative ZPS, attenuated experimental colitis in mice. Collectively, this screen identifies bacterial strains that may use ZPSs to interact with the host as well as those with potential probiotic properties
- …