7 research outputs found

    The Color-Period Diagram and Stellar Rotational Evolution - New Rotation Period Measurements in the Open Cluster M34

    Full text link
    We present results from a 5-month photometric survey for stellar rotation periods combined with a 4-year radial-velocity survey for membership and binarity in the 220Myr open cluster M34. We report surface rotation periods for 120 stars, 83 of which are late-type cluster members. A comparison to previous work serves to illustrate the importance of high cadence long baseline photometric observations and membership information. The new M34 periods are less biased against slow rotation and cleaned for non-members. The rotation periods of the cluster members span more than an order of magnitude from 0.5 day up to 11.5 days, and trace two distinct rotational sequences - fast (C) and moderate-to-slow (I) - in the color-period diagram. The sequences represent two different states in the rotational evolution of the late-type cluster members. We use the color-period diagrams for M34 and for younger and older clusters to estimate the timescale for the transition from the C to the I sequence and find ~<150Myr, ~150-300Myr, and ~300-600Myr for G, early-mid K, and late K dwarfs, respectively. The small number of stars in the gap between C and I suggest a quick transition. We estimate a lower limit on the maximum spin-down rate (dP/dt) during this transition to be ~0.06 days/Myr and ~0.08 days/Myr for early and late K dwarfs, respectively. We compare the I sequence rotation periods in M34 and the Hyades for G and K dwarfs and find that K dwarfs spin down slower than the Skumanich rate. We determine a gyrochronology age of 240Myr for M34. We measure the effect of cluster age uncertainties on the gyrochronology age for M34 and find the resulting error to be consistent with the error estimate for the technique. We use the M34 I sequence to redetermine the coefficients in the expression for rotational dependence on color used in gyrochronology (abridged).Comment: 47 pages (12pt, preprint), 14 figures, 2 tables, Accepted for publication in ApJ, format of RA coordinates in Table 2 corrected in latest versio

    Enzyme Pretreatment plus Locally Delivered HB-IGF-1 Stimulate Integrative Cartilage Repair In Vitro

    No full text
    Focal cartilage defects caused by joint injury have a limited capacity to self-repair and, if left untreated, can lead to the early onset of osteoarthritis. The current standard of care, microfracture surgery, induces an endogenous repair response, but typically results in poorly integrated fibrocartilage, rather than native hyaline cartilage. The objective of this study was to test the hypothesis that a self-assembling peptide hydrogel functionalized with the proanabolic growth factor heparin-binding insulin-like growth factor-1 (HB-IGF-1) may improve integration between native cartilage and neotissue when combined with a brief enzymatic pretreatment to the defect site. This enzymatic pretreatment releases proteoglycans from the walls of the surrounding native cartilage in a controlled manner and, thereby, creates space for newly synthesized repair tissue to anchor and integrate with adjacent host cartilage. We used an in vitro model in which a cylindrical annulus of native cartilage was pretreated with trypsin over a 2-min period and then filled with a chondrocyte-seeded [KLDL]3 hydrogel functionalized with proanabolic HB-IGF-1 that had been premixed into the gel. This procedure was deemed to be clinically tractable in the context of ongoing parallel animal studies as a method to augment the microfracture procedure. The trypsin pretreatment depleted proteoglycan content of adjacent cartilage in a controlled manner without inducing cell death. The addition of HB-IGF-1 was found to stimulate matrix biosynthesis both in the surrounding cartilage and the chondrocyte-seeded KLD scaffold, and to enhance mechanical integration of neotissue into native matrix. A critical attribute for the long-term success of cartilage defect repair is the strong integration between the repair tissue and the surrounding native tissue. Current approaches utilized by physicians fail to achieve this attribute, leading to eventual relapse of the defect. This article demonstrates the concept of a simple, clinically viable approach for enhancing tissue integration via the combination of a safe, transient enzymatic treatment with a locally delivered, retained growth factor through an in vitro hydrogel/cartilage explant model.National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (Grant AR060331

    Chapter IV: Teaching Foreign Languages

    No full text
    corecore