208 research outputs found

    Number of paths versus number of basis functions in American option pricing

    Full text link
    An American option grants the holder the right to select the time at which to exercise the option, so pricing an American option entails solving an optimal stopping problem. Difficulties in applying standard numerical methods to complex pricing problems have motivated the development of techniques that combine Monte Carlo simulation with dynamic programming. One class of methods approximates the option value at each time using a linear combination of basis functions, and combines Monte Carlo with backward induction to estimate optimal coefficients in each approximation. We analyze the convergence of such a method as both the number of basis functions and the number of simulated paths increase. We get explicit results when the basis functions are polynomials and the underlying process is either Brownian motion or geometric Brownian motion. We show that the number of paths required for worst-case convergence grows exponentially in the degree of the approximating polynomials in the case of Brownian motion and faster in the case of geometric Brownian motion.Comment: Published at http://dx.doi.org/10.1214/105051604000000846 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Linear Classifiers Under Infinite Imbalance

    Full text link
    We study the behavior of linear discriminant functions for binary classification in the infinite-imbalance limit, where the sample size of one class grows without bound while the sample size of the other remains fixed. The coefficients of the classifier minimize an expected loss specified through a weight function. We show that for a broad class of weight functions, the intercept diverges but the rest of the coefficient vector has a finite limit under infinite imbalance, extending prior work on logistic regression. The limit depends on the left tail of the weight function, for which we distinguish three cases: bounded, asymptotically polynomial, and asymptotically exponential. The limiting coefficient vectors reflect robustness or conservatism properties in the sense that they optimize against certain worst-case alternatives. In the bounded and polynomial cases, the limit is equivalent to an implicit choice of upsampling distribution for the minority class. We apply these ideas in a credit risk setting, with particular emphasis on performance in the high-sensitivity and high-specificity regions

    Contagion in financial networks

    Get PDF
    The recent financial crisis has prompted much new research on the interconnectedness of the modern financial system and the extent to which it contributes to systemic fragility. Network connections diversify firms' risk exposures, but they also create channels through which shocks can spread by contagion. We review the extensive literature on this issue, with the focus on how network structure interacts with other key variables such as leverage, size, common exposures, and short-term funding. We discuss various metrics that have been proposed for evaluating the susceptibility of the system to contagion and suggest directions for future research

    New News is Bad News

    Full text link
    An increase in the novelty of news predicts negative stock market returns and negative macroeconomic outcomes over the next year. We quantify news novelty - changes in the distribution of news text - through an entropy measure, calculated using a recurrent neural network applied to a large news corpus. Entropy is a better out-of-sample predictor of market returns than a collection of standard measures. Cross-sectional entropy exposure carries a negative risk premium, suggesting that assets that positively covary with entropy hedge the aggregate risk associated with shifting news language. Entropy risk cannot be explained by existing long-short factors

    Collateralized networks

    Get PDF
    This paper studies the spread of losses and defaults in financial networks with two interrelated features: collateral requirements and alternative contract termination rules. When collateral is committed to a firm’s counterparties, a solvent firm may default if it lacks sufficient liquid assets to meet its payment obligations. Collateral requirements can thus increase defaults and payment shortfalls. Moreover, one firm may benefit from the failure of another if the failure frees collateral committed by the surviving firm, giving it additional resources to make other payments. Contract termination at default may also improve the ability of other firms to meet their obligations through access to collateral. As a consequence of these features, the timing of payments and collateral liquidation must be carefully specified to establish the existence of payments that clear the network. Using this framework, we show that dedicated collateral may lead to more defaults than pooled collateral; we study the consequences of illiquid collateral for the spread of losses through fire sales; we compare networks with and without selective contract termination; and we analyze the impact of alternative resolution and bankruptcy stay rules that limit the seizure of collateral at default. Under an upper bound on derivatives leverage, full termination reduces payment shortfalls compared with selective termination

    Valuing the Treasury\u27s Capital Assistance Program

    Get PDF

    Connecting discrete and continuous path-dependent options

    Full text link
    This paper develops methods for relating the prices of discrete- and continuous-time versions of path-dependent options sensitive to extremal values of the underlying asset, including lookback, barrier, and hindsight options. The relationships take the form of correction terms that can be interpreted as shifting a barrier, a strike, or an extremal price. These correction terms enable us to use closed-form solutions for continuous option prices to approximate their discrete counterparts. We also develop discrete-time discrete-state lattice methods for determining accurate prices of discrete and continuous path-dependent options. In several cases, the lattice methods use correction terms based on the connection between discrete- and continuous-time prices which dramatically improve convergence to the accurate price.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42332/1/780-3-1-55_90030055.pd
    • …
    corecore