97 research outputs found

    Morris Water Maze Learning in Two Rat Strains Increases the Expression of the Polysialylated Form of the Neural Cell Adhesion Molecule in the Dentate Gyrus But Has No Effect on Hippocampal Neurogenesis

    Get PDF
    In the current study, the authors investigated whether Morris water maze learning induces alterations in hippocampal neurogenesis or neural cell adhesion molecule (NCAM) polysialylation in the dentate gyrus. Two frequently used rat strains, Wistar and Sprague–Dawley, were trained in the spatial or the nonspatial version of the water maze. Both training paradigms did not have an effect on survival of newly formed cells that were labeled 7–9 days prior to the training or on progenitor proliferation in the subgranular zone. However, the granule cell layer of the spatially trained rats contained significantly more positive cells of the polysialylated form of the NCAM. These data demonstrate that Morris water maze learning causes plastic change in the dentate gyrus without affecting hippocampal neurogenesis.

    High-voltage-activated Ca2+ currents and the excitability of pyramidal neurons in the hippocampal CA3 subfield in rats depend on corticosterone and time of day

    Get PDF
    This study tested the time-of-day dependence of the intrinsic postsynaptic properties of hippocampal CA3 pyramidal neurons. High-voltage-activated Ca2+ currents and the Ca2+- and voltage-dependent afterhyperpolarizations were examined in slices of rat brains obtained at four distinct time periods. Just after onset of the dark phase, the steady-state amplitude of the Ca2+ current (-1.24 ± 0.11 nA) was significantly greater (P < 0.03) than that of the light phase (-0.84 ± 0.06 nA). Over the entire time range, the amplitude of the Ca2+ current correlated with plasma corticosterone levels in a U-shaped function. Furthermore, depolarization-induced excitability during the dark phase exhibited an increased spike after depolarization (3.1 ± 0.1 mV) and a slower adaptation of the firing frequency (146 ± 18%). These findings point to a dynamic time-of-day dependence of the CA3 neuronal properties and postsynaptic Ca2+ currents.

    Similar Ultrastructural Breakdown of Cerebrocortical Capillaries in Alzheimer’s Disease, Parkinson’s Disease, and Experimental Hypertension. What is the Functional Link?

    Get PDF
    The brain, as an intensely active organ, is highly dependent on a sufficient nutrient and oxygen availability in order to reach its optimal working capacity. It is well known that the vital supply of energy substrates is provided by the circulatory system, which splits up into a fine, terminal capillary network in target tissues. These capillaries are considered as important sites, since the actual nutrient trafficking takes place through their walls. That is why an intact, preserved structure of the microvessels is crucial to fulfill their function. Since the brain is known to be particularly vulnerable to suboptimal oxygen and glucose delivery, the intact morphology of capillaries is of paramount importance. Several observations have indicated that the cerebral capillary ultrastructure is damaged in Alzheimer’s disease (AD). Curiously, the regional cerebral blood flow of AD patients is also significantly lower than in age-matched control individuals. Based on these data, it has been suggested that the decreased blood supply and the cerebrovascular alterations contribute to the development of dementia. However, we have observed similar capillary damage in Parkinson’s disease patients and chronically hypertensive rats in addition to AD cases, as presented here. These findings indicate that cerebral capillary damage is not exclusive for AD but occurs under other neurodegenerative disorders and hypertension, as well. We hypothesize that ultrastructural abnormalities of cerebral capillaries are causally related to decreased cerebral blood flow and create a condition that favors neurodegenerative mechanisms including the development of dementia
    • …
    corecore